Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 439-445    DOI: 10.11902/1005.4537.2019.162
  研究报告 本期目录 | 过刊浏览 |
应力作用下2297铝锂合金腐蚀行为研究
于美(),魏新帝,范世洋,刘建华,李松梅,钟锦岩
北京航空航天大学材料科学与工程学院 北京 100083
Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load
YU Mei(),WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan
School of Materials Science and Engineering, Beihang University, Beijing 100083, China
全文: PDF(8187 KB)   HTML
摘要: 

通过不同应力 (0%σ0.2,30%σ0.2,60%σ0.2,90%σ0.2和103%σ0.2) 加载条件下的短时间浸泡实验和原位电化学测试,研究了应力加载对2297铝锂合金在3.5% (质量分数) NaCl溶液中点蚀行为的影响。结合2297铝锂合金初始及塑性变形后的微观结构表征,探讨了应力加载对其腐蚀行为影响的机制。结果表明,塑性变形后,2297铝锂合金中原始存在的粗大AlCuMnFe金属间化合物颗粒变得细小而分散,晶粒内部产生了位错堆积而形成的位错墙。点蚀主要发生在AlCuMnFe金属间化合物颗粒的周围,晶面滑移、位错缠结等晶体缺陷也会成为腐蚀形核位置。应力载荷的增加 (由0%σ0.2~103%σ0.2) 导致腐蚀电位负移,腐蚀电流密度增加,电荷转移电阻减小,应力水平达到塑性应力范围时变化更加明显。

关键词 铝锂合金腐蚀应力微观结构电化学    
Abstract

The effect of tensile load on pitting corrosion behavior of 2297 Al-Li alloy in 3.5% (mass fraction) NaCl solution was studied by short time immersion test and in-situ electrochemical test under different loading conditions within the range of 0%, 30%, 60%, 90% and 103% of the σ0.2 of the alloy, while the microstructure of the initial and plastically deformed 2297 Al-Li alloy was characterized. After plastic deformation, AlCuMnFe intermetallic particles of 2297 Al-Li alloy become fine and uniformly dispersed, and dislocation walls are formed inside the grains due to dislocation accumulation. Pitting corrosion mainly occurs around the AlCuMnFe intermetallic particles, and crystal defects such as crystal plane slip and dislocation entanglement also become corrosion nucleation sites. The increase of the applied load within the range of 0%σ0.2~103%σ0.2 leads to negative shift of the corrosion potential, increase of the corrosion current density and the charge transfer resistance, which will become more obvious when the stress level reaches the plastic stress range.

Key wordsAl-Li alloy    corrosion    stress load    microstructure    electrochemistry
收稿日期: 2019-09-20     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51671013)
通讯作者: 于美     E-mail: yumei@buaa.edu.cn
Corresponding author: Mei YU     E-mail: yumei@buaa.edu.cn
作者简介: 于美,女,1981年生,博士,副教授

引用本文:

于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
Mei YU, Xindi WEI, Shiyang FAN, Jianhua LIU, Songmei LI, Jinyan ZHONG. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 439-445.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.162      或      https://www.jcscp.org/CN/Y2019/V39/I5/439

图1  实验所用L-T取向平板拉伸试样
图2  外加应力作用下原位电化学测量装置示意图
图3  2297-T87铝锂合金[110]Al取向TEM像及EDS结果
图4  不同应力作用下浸泡2 h后2297-T87铝锂合金金相显微形貌
图5  不同应力作用下2297-T87铝锂合金浸泡2 h后背散射模式SEM形貌
图6  图5a的EDS面扫结果
图7  不同应力作用下2297-T87铝锂合金在3.5%NaCl溶液中的动电位极化曲线
StressloadEcorrmVSCEIcorr10-7 A·cm-2bamVSCE / dec-bcmVSCE / dec
0%σ0.2-7662.432130132
30%σ0.2-7712.589136124
60%σ0.2-7742.755140120
90%σ0.2-7803.357144119
103%σ0.2-7834.683146113
表1  动电位极化曲线参数值
图8  不同应力作用下2297-T87铝锂合金在3.5%NaCl溶液中浸泡1 h后的电化学阻抗谱
图9  EIS拟合等效电路图
Stress loadRs / Ω·cm2Qh / Yh·Ω-1·cm-2·snnfRh / Ω·cm2Qdl / Ydl·Ω-1·cm-2·snndlRct / Ω·cm2
0%σ0.23.021.67×10-58.76×10-11.48×1048.76×10-51.0002.35×104
30%σ0.24.4871.86×10-58.17×10-11.37×1049.03×10-50.9912.05×104
60%σ0.23.521.68×10-58.80×10-11.41×1049.29×10-51.0001.85×104
90%σ0.23.171.51×10-58.71×10-11.52×1049.77×10-51.0001.56×104
103%σ0.22.931.78×10-58.61×10-11.27×1041.30×10-41.0001.23×104
表2  不同应力下2297-T87铝锂合金在3.5%NaCl溶液中浸泡1 h后的阻抗参数拟合值
图10  2297-T87铝锂合金在3.5%NaCl溶液中不同应力作用条件下的腐蚀机制
1 YangS J, LuJ, FengZ H, et al. The history of Al-Li alloys and the research development in China [J]. Mater. Rev., 2014, 28(Suppl. 2: 430
1 杨守杰, 卢健, 冯朝辉等. 铝锂合金历史回顾与在中国的研究发展 [J]. 材料导报, 2014, 28(增刊2): 430
2 YinD F, ZhengZ Q. History and current status of aluminum-lithium alloys research and development [J]. Mater. Rev., 2003, 17(2): 18
2 尹登峰, 郑子樵. 铝锂合金研究开发的历史与现状 [J]. 材料导报, 2003, 17(2): 18
3 RiojaR J, LiuJ. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
4 MaY, ZhouX, LiaoY, et al. Localised corrosion in AA2099-T83 aluminium-lithium alloy: The role of grain orientation [J]. Corros. Sci., 2016, 107: 41
5 DonatusU, TeradaM, OspinaC R, et al. On the AA2198-T851 alloy microstructure and its correlation with localized corrosion behaviour [J]. Corros. Sci., 2018, 131: 300
6 GuérinM, AlexisJ, AndrieuE, et al. Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy [J]. Corros. Sci., 2016, 102: 291
7 LiuJ H, ZhaoK, YuM, et al. Effect of surface abrasion on pitting corrosion of Al-Li alloy [J]. Corros. Sci., 2018, 138: 75
8 YouW, HuangD S, GuoY L. Effects of aging treatment on corrosion behavior of 2297 aluminum alloy [J]. Aluminum Fabrication, 2016, (1): 4
8 游文, 黄德胜, 呙永林. 时效工艺对2297合金腐蚀行为的影响 [J]. 铝加工, 2016, (1): 4
9 Гутман З М, translated by JinS. Metal Mechanics Chemistry and Corrosion Protection [M]. Beijing: Science Press, 1989
9 古特曼著, 金石译. 金属力学化学与腐蚀防护 [M]. 北京: 科学出版社, 1989
10 LiH Z, ZhangX M, ChenM A, et al. Effect of pre-deformation on the stress corrosion cracking susceptibility of aluminum alloy 2519 [J]. Rare Met., 2007, 26: 385
11 McMahonM E, SteinerP J, LassA B, et al. The effect of loading orientation on the stress corrosion cracking of Al-Mg alloys [J]. Corros. Sci., 2017, 73: 713
12 SuJ, ZhangZ, ShiY, et al. The effect of applied tensile stress on the exfoliation corrosion of 7075-T6 alloy [J]. Mater. Corros., 2006, 57: 729
13 RaoS X, ZhuL Q, LiD, et al. Effects of mechanochemistry to the pitting behaviour of LY12CZ aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 228
13 饶思贤, 朱立群, 李荻等. 力学化学效应对LY12CZ铝合金点蚀行为的影响 [J]. 中国腐蚀与防护学报, 2007, 27: 228
14 LiH Y, KangW, LuX C. Effect of age-forming on microstructure, mechanical and corrosion properties of a novel Al-Li alloy [J]. J. Alloy. Compd., 2015, 640: 210
15 GrilliR, BakerM A, CastleJ E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution [J]. Corros. Sci., 2010, 52: 2855
16 TianW M, LiS M, ChenX, et al. Intergranular corrosion of spark plasma sintering assembled bimodal grain sized AA7075 aluminum alloys [J]. Corros. Sci., 2016, 107: 211
17 MoretoJ A, MarinoC E B, FilhoW W B, et al. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication [J]. Corros. Sci., 2014, 84: 30
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[12] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[15] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.