Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 417-422    DOI: 10.11902/1005.4537.2019.155
  研究报告 本期目录 | 过刊浏览 |
FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察
魏欣欣1,2,张波1(),马秀良1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 合肥 230026
TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature
WEI Xinxin1,2,ZHANG Bo1(),MA Xiuliang1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
全文: PDF(6827 KB)   HTML
摘要: 

利用透射电子显微镜 (TEM) 对FeCr15Ni15单晶在600 ℃下形成的氧化膜进行了系统的研究。结果表明,氧化膜分为内外两层,膜厚为4~6 μm。膜内层为富Fe、Cr的尖晶石氧化物,膜外层为富Fe、Ni的尖晶石氧化物。氧化膜内层具有晶体学面的各向异性,氧化膜沿着富Ni基体大量的 (111) 面外延生长,[110]基体//[110]氧化膜,(111)基体//(111)氧化膜。内层氧化膜的外侧区域较内侧区域氧化更充分,存在大量的面缺陷和Kirkendall效应留下的空洞,成为膜最疏松的区域。外层尖晶石氧化膜较为致密。

关键词 氧化膜TEMFeCr15Ni15单晶微观结构    
Abstract

The oxide scale formed on FeCr15Ni15 single crystal alloy at 600 ℃ for 20 h was characterized by means of transmission electron microscope. Results showed that the oxide scale of 4~6 μm in thickness was differentiated into two layers. The inner layer of the scale was spinel oxide rich in Fe and Cr, while the outer layer was spinel oxide rich in Fe and Ni. The region I of inner layer was anisotropy, of which oxides present epitaxial growth along a large amount of (111) plane of the matrix, i.e. [110]matrix//[110]ox, (111)matrix//(111)ox, however the region II and region III compose completely of oxides, while there exist a large number of surface defects and holes left by the kirkendall effect, which become the most porous area of the oxide scale, therefore, as a result, cracking and spalling off may certainly occur there. In the contrast, the outer layer of the oxide scale is dense one composed of polycrystalline spinel oxides.

Key wordsoxide scale    TEM    FeCr15Ni15 single crystal    microstructure
收稿日期: 2019-09-12     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51771212);中国科学院金属研究所创新基金重点项目(2017-ZD05)
通讯作者: 张波     E-mail: bozhang@imr.ac.cn
Corresponding author: Bo ZHANG     E-mail: bozhang@imr.ac.cn
作者简介: 魏欣欣,女,1992年生,博士生

引用本文:

魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
Xinxin WEI, Bo ZHANG, Xiuliang MA. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 417-422.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.155      或      https://www.jcscp.org/CN/Y2019/V39/I5/417

图1  FeCr15Ni15单晶 (110) 面上生长的氧化膜的HAADF-STEM像
图2  氧化膜的EDS成分分析
图3  氧化膜内层区域I的HAADF-STEM像
图4  图1中氧化膜内层区域I的EDS成分分析
图5  氧化膜内层区域I的HAADF-STEM高分辨像
图6  氧化膜内层区域II和区域III的HAADF-STEM像
图7  氧化膜外层的透射电镜观察
1 DingQ Q, YuQ, LiJ X, et al. Research progresses of rhenium effect in nickel based superalloys [J]. Mater. Rev., 2018, 32: 110
1 丁青青, 余倩, 李吉学等. 铼在镍基高温合金中作用机理的研究现状 [J]. 材料导报, 2018, 32: 110
2 WrightI G, DooleyR B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
3 GaoX, WuX Q, GuanH, et al. Progress in study on corrosion scale formed in high-temperature and high-pressure water [J]. Corros. Sci. Prot. Technol., 2007, 19: 110
3 高欣, 吴欣强, 关辉等. 高温高压水环境中腐蚀产物膜的研究现状 [J]. 腐蚀科学与防护技术, 2007, 19: 110
4 MaC, PengQ J, HanE-H, et al. Review of stress corrosion cracking of structural materials in nuclear powerplants [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 37
4 马成, 彭群家, 韩恩厚等. 核电结构材料应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2014, 34: 37
5 SunM C, WuX Q, ZhangZ E, et al. Oxidation of 316 stainless steel in supercritical water [J]. Corros. Sci., 2009, 51: 1069
6 ZiemniakS E, HansonM, SanderP C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water [J]. Corros. Sci., 2008, 50: 2465
7 XieY, WuY Q, BurnsJ, et al. Characterization of stress corrosion cracks in Ni-based weld alloys 52, 52M and 152 grown in high-temperature water [J]. Mater. Charact., 2016, 112: 87
8 KuangW J, HanE-H, WuX Q, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52: 3654
9 WagnerC. The electrochemistry of ionic crystals [J]. J. Electrochem. Soc., 1952, 99: C346
10 WagnerC. Reaktionstypen bei der oxydation von legierungen [J]. Zeitschrift Für Elektrochemie, 1959, 63: 772
11 AtkinsonA. Transport processes during the growth of oxide films at elevated temperature [J]. Rev. Mod. Phys., 1985, 57: 437
12 CabreraN, MottN F. Theory of the oxidation of metals [J]. Rep. Prog. Phys., 1949, 12: 163
13 EvansH E. Stress effects in high temperature oxidation of metals [J]. Int. Mater. Rev., 1995, 40: 1
14 DaviesD E, EvansU R, AgarJ N. The oxidation of iron at 175 to 350 ℃ [J]. Proc. Roy. Soc. London, 1954, 225A: 443
15 LiZ Y, CaiZ B, ZhouT, et al. Characteristics and formation mechanism of oxide film on 304 stainless steel in high temperature water [J]. Mater. Chem. Phys., 2019, 222: 267
16 CaoX Y, ZhuP, WangW, et al. Effect of thermal aging on oxide film of stainless steel weld overlay cladding exposed to high temperature water [J]. Mater. Charact., 2018, 138: 195
17 MaH, ChenX Q, LiR H, et al. First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments [J]. Acta Mater., 2017, 130: 137
18 SongG L, XuZ Q. Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution [J]. Corros. Sci., 2012, 54: 97
19 SongG L, MishraR, XuZ Q. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy [J]. Electrochem. Commun., 2010, 12: 1009
20 GrayJ J, El DasherB S, OrmeC A. Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22 [J]. Surf. Sci., 2006, 600: 2488
21 YassarR S, ScudieroL, AlamrA S, et al. Microstructure-mechanical and chemical behavior relationships in passive thin films [J]. Thin Solid Films, 2010, 518: 2757
22 ZhangB, SanX Y, WeiX X, et al. Quasi-in-situ observing the growth of native oxide film on the FeCr15Ni15 austenitic alloy by TEM [J]. Corros. Sci., 2018, 140: 1
23 WangW, CaoX Y, LuY H, et al. TEM study on oxide mechanism of the dissimilar welds between 316 stainless steels/Inconel 182 in high temperature and high pressure water [J]. Mater. Charact., 2017, 131: 339
24 ZhengS J, WangY J, ZhangB, et al. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels [J]. Acta Mater., 2010, 58: 5070
25 ChenC L, LiH P, SekiT, et al. Direct determination of atomic structure and magnetic coupling of magnetite twin boundaries [J]. ACS Nano, 2018, 12: 2662
26 PrattA, LariL, HovorkaO, et al. Enhanced oxidation of nanoparticles through strain-mediated ionic transport [J]. Nat. Mater., 2014, 13: 26
27 YinY D, RiouxR M, ErdonmezC K, et al. Formation of hollow nanocrystals through the nanoscale kirkendall effect [J]. Science, 2004, 304: 711
[1] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[2] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[3] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[4] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[5] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[6] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[7] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[8] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[9] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[10] 杜开发,王彬,甘复兴,汪的华. 铜锡合金阳极在熔融碳酸盐中氧化膜的形成及其防护性能[J]. 中国腐蚀与防护学报, 2017, 37(5): 421-427.
[11] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[12] 周和荣,胡碧华,姚望,洪新培,宋述鹏. 铝合金阳极氧化层在江津污染大气环境中暴露腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 273-278.
[13] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[14] 王胜刚, 孙淼, 龙康. 紫外光电子能谱和X射线光电子能谱表征在金属材料腐蚀中的应用[J]. 中国腐蚀与防护学报, 2016, 36(4): 287-294.
[15] 海正银, 王辉, 辛长胜, 蔡敏, 秦博, 陈童. 加锌对690合金在高温水中形成的氧化膜的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.