Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 375-386    DOI: 10.11902/1005.4537.2019.143
  综合评述 本期目录 | 过刊浏览 |
铋系可见光催化海洋防污材料研究进展
王毅1,2,3,张盾1,2,3()
1. 中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071
2. 青岛海洋科学与技术国家实验室海洋腐蚀与防护开放工作室 青岛 266237
3. 中国科学院海洋大科学研究中心 青岛 266071
Research Progress of Bismuth Based Visible Light Photocatalytic Antifouling Materials
WANG Yi1,2,3,ZHANG Dun1,2,3()
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
3. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
全文: PDF(3583 KB)   HTML
摘要: 

生物污损是海洋工程材料在服役过程中面临的重要问题之一,因此开发高效、环保的新型防污材料具有重要意义。铋系半导体材料是近年来广受关注的一类新型光催化剂,因其具有独特的结构和合适的禁带宽度,而表现出了良好的可见光催化性能,在海洋防污领域有巨大的应用前景。本文从铋系可见光催化防污材料和作用机理的角度,阐述了近年来在铋系半导体材料体系方面的研究进展。作为一种新型的防污材料,基于铋系半导体材料的可见光催化防污技术有望在海洋防污领域中提供一种新的策略。

关键词 生物污损可见光催化钨酸铋钒酸铋碘氧化铋防污机制    
Abstract

Marine biofouling is one of the important issues encountered by marine engineering materials in the service process. Therefore, it is of great significance to develop new and effective antifouling materials with high efficiency and environmental-friendly. Bi-based semiconductor materials are a new class of photocatalysts that have been studied with great concern in recent years. Because of their unique structure and suitable band gap, they exhibit good visible light catalytic performance and have great application prospects in marine antifouling field. From the perspective of visible light photocatalytic antifouling materials and the antifouling mechanism, this article describes the recent research progress in Bi-based semiconductor material systems. As a new type of antifouling material, the Bi-based semiconductor material related visible light photocatalytic antifouling technology is expected to provide a new strategy in the field of marine antifouling.

Key wordsbiofouling    visible light photocatalysis    bismuth tungstate    bismuth vanadate    bismuth oxyiodide    antifouling mechanism
收稿日期: 2019-09-06     
ZTFLH:  TG174  
基金资助:国家自然科学基金(41776090)
通讯作者: 张盾     E-mail: zhangdun@qdio.ac.cn
Corresponding author: Dun ZHANG     E-mail: zhangdun@qdio.ac.cn
作者简介: 王毅,男,1981年生,博士,研究员

引用本文:

王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
Yi WANG, Dun ZHANG. Research Progress of Bismuth Based Visible Light Photocatalytic Antifouling Materials. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 375-386.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.143      或      https://www.jcscp.org/CN/Y2019/V39/I5/375

图1  光催化机理
Gram-negative bacteriaGram-positive bacteriaVirusFungal species
ColiformsLactobacillus acidophBacteriophageCandida albicans
Pseudomonas aeruginosaDeinococcusradiophilusHerpes simplexPenicilliumexpansum
Gram-negative bacteriaGram-positive bacteriaVirusFungal species
Pseudomonas stuzeriStreptococcus faecalisHepatitis BDaportheactinidiae
Pseudomonas putidaS. mutansPoliovirusAspergillusniger
Klebsiella pneumoniaS. aureusMS2 phaseFusarium. solani
ShigellaflexneriS. pyogenesRotavirusF. anthophilum
S. dysenteriaeEnterococcus faecalisAstrovirusF. equiseti
AcinetobacterbaumanniiE. hiraeFeline calicivirusF. oxysporum
A. calcoaceticusE. faeciumInfluenza virusF. verticillioides
Salmonella typhimuriumListeria monocytogenes---Penicilliumchrysogenum
S. choleraesuisLactobacillus helveticus------
S. entericaB. subtilis------
Vibrio parahaemolyticusB. cereus------
V. choleraB. pumilus------
Enterobacter cloacaeMicrococcus luteus------
SerratiamarcescensMicrococcus lylae------
BacteroidesfragilisClostridium perfringens------
Legionella pneumophlia---------
表1  光催化杀菌研究中所用模式微生物
图2  Bi2O3的晶体结构图[24]
图3  Bi2S3的晶体结构图
图4  Bi2WO6的晶体结构图
图5  BiVO4的晶体结构图[51]
图6  BiOX (X=Cl, Br, I) 的晶体结构图[73]
图7  BiOX (X=Cl, Br, I) 半导体的带隙结构图[74]
PhotocatalystMicrobial strainDisinfection resultInactivation time / minRef.
Bi2O3E. coli90%120[78]
Bi2WO6E. coli95%120[79]
Bi2WO6Amphidiumcarterae~100%30[80]
Bi2WO6Tetraselmissuecica~100%60[80]
BiVO4E. coli100%480[81]
BiVO4E. coli~100%300[82]
BiVO4P. aeruginosa99.9%120[83]
Bi2MoO6S. aureus84%120[84]
BiOBrE. coli~100%120[85]
BiOBrE. coli~100%45[86]
BiOIBacillussp.99.9%60[87]
BiOIPseudoalteromonas sp.99.8%60[87]
Ti-doped BiOIE. coli~100%45[88]
Ti-doped BiOIS. aureus~100%45[88]
BiOI/BiOBrE. coli90%720[89]
Ag-Bi2WO6E. coli99%30[90]
Ag-Bi2WO6S. epidermidis84%30[90]
AgBr-Ag-Bi2WO6E. coli~100%15[91]
TiO2/Bi2WO6E. coli~100%240[92]
Bi2WO6/BiOIP. aeruginosa99.99%60[93]
AgI/Bi2MoO6E. coli~100%30[94]
AgI/Bi2MoO6S. aureus~100%90[94]
Ce doped Bi2MoO6S. aureus99%180[95]
AgI/AgBr/BiOBr0.75I0.25E. coli~100%30[96]
表2  不同光催化剂可见光催化杀菌的性能对比
图8  Bi2WO6/BiVO4光催化杀菌机理图[98]
图9  Bi2WO6/BiOI光催化杀菌机理图[93]
图10  BiOI/BiVO4光催化杀菌机理[97]
图11  AgI/BiVO4光催化杀菌机理[100]
图12  BiOI@304SS的数码照片[103]
图13  BiOI/BiOBr@304SS的光催化机理[104]
图14  多功能传感器检测杀灭过程原理示意图[105]
1 HuangZ G. Marine Fouling and Its Prevention [M]. Beijing: China Ocean Press, 2008
1 黄宗国. 海洋污损生物及其防除 [M]. 北京: 海洋出版社, 2008
2 DaffornK A, LewisJ A, JohnstonE L. Antifouling strategies: History and regulation, ecological impacts and mitigation [J]. Mar. Pollut. Bull., 2011, 62: 453
3 Antizar-LadislaoB. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review [J]. Environ. Int., 2008, 34: 292
4 TurnerA, PollockH, BrownM T. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca [J]. Environ. Pollut., 2009, 157: 2314
5 DahlB, BlanckH. Toxic effects of the antifouling agent irgarol 1051 on periphyton communities in coastal water microcosms [J]. Mar. Pollut. Bull., 1996, 32: 342
6 de GrootA C, LiemD H, WeylandJ W. Kathon? CG: cosmetic allergy and patch test sensitization [J]. Contact Dermatitis, 1985, 12: 76
7 VoulvoulisN, ScrimshawM D, LesterJ N. Alternative antifouling biocides [J]. Appl. Organomet. Chem., 1999, 13: 135
8 CallD J, BrookeL T, KentR J, et al. Bromacil and diuron herbicides: toxicity, uptake, and elimination in freshwater fish [J]. Arch. Environ. Contam. Toxicol., 1987, 16: 607
9 KobayashiM, KakizonoT, YamaguchiK, et al. Growth and astaxanthin formation of haematococcus pluvialis in heterotrophic and mixotrophic conditions [J]. J. Ferment. Bioeng., 1992, 74: 17
10 GiaviniE, VismaraC, BrocciaM L. Pre- and postimplantation embryotoxic effects of zinc dimethyldithiocarbamate (Ziram) in the rat [J]. Ecotox. Environ. Safe., 1983, 7: 531
11 ShuklaY, BaqarS M, MehrotraN K. Carcinogenicity and co-carcinogenicity studies on propoxur in mouse skin [J]. Food Chem. Toxicol., 1998, 36: 1125
12 HeilJ, ReifferscheidG, HellmichD, et al. Genotoxicity of the fungicide dichlofluanid in seven assays [J]. Environ. Mol. Mutagen., 1991, 17: 20
13 NielsenN, MennéT. Allergic contact dermatitis caused by zinc pyrithione associated with pustular psoriasis [J]. Am. J. Contact Dermat., 1997, 8: 170
14 GokaK. Embryotoxicity of zinc pyrithione, an antidandruff chemical, in fish [J]. Environ. Res., 1999, 81: 81
15 ErmolayevaE, SandersD. Mechanism of pyrithione-induced membrane depolarization in Neurospora crassa [J]. Appl. Environ. Microbiol., 1995, 61: 3385
16 Holmstr?mC, KjellebergS. The effect of external biological factors on settlement of marine invertebrate and new antifouling technology [J]. Biofouling, 1994, 8: 147
17 GoodeveC F, KitchenerJ A. Photosensitisation by titanium dioxide [J]. Trans. Faraday Soc., 1938, 34: 570
18 FujishimaA, HondaK. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37
19 CoronadoJ M, FresnoF, Hernández-AlonsoM D, et al. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications [M]. New York: Springer, 2013
20 Markowska-SzczupakA, UlfigK, MorawskiA W. The application of titanium dioxide for deactivation of bioparticulates: An overview [J]. Catal. Today, 2011, 169: 249
21 PaspaltsisI, KottaK, LagoudakiR, et al. Titanium dioxide photocatalytic inactivation of prions [J]. J. Gen. Virol., 2006, 87: 3125
22 KubackaA, Fernández-GarcíaM, ColónG. Advanced nanoarchitectures for solar photocatalytic applications [J]. Chem. Rev., 2012, 112: 1555
23 NakataK, FujishimaA. TiO2 photocatalysis: Design and applications [J]. J. Photochem. Photobiol., 2012, 13C: 169
24 ChengH F, HuangB B, LuJ B, et al. Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs [J]. Phys. Chem. Chem. Phys., 2010, 12: 15468
25 JalalahM, FaisalM, BouzidH, et al. Comparative study on photocatalytic performances of crystalline α- and β-Bi2O3 nanoparticles under visible light [J]. J. Ind. Eng. Chem., 2015, 30: 183
26 VilaM, Díaz-GuerraC, PiquerasJ, et al. Growth, structure, luminescence and mechanical resonance of Bi2O3 nano- and microwires [J]. CrystEngComm, 2015, 17: 132
27 LiL, YangY W, LiG H, et al. Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes [J]. Small, 2006, 2: 548
28 SoodS, UmarA, MehtaS K, et al. α-Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol [J]. Ceram. Int., 2015, 41: 3355
29 ChaiW W, YangF, YinW H, et al. Bi2S3/C nanorods as efficient anode materials for lithium-ion batteries [J]. Dalton Trans., 2019, 48: 1906
30 YuX B, ZhouJ J, LiQ, et al. Bi2S3 nanorod-stacked hollow microtubes self-assembled from bismuth-based metal-organic frameworks as advanced negative electrodes for hybrid supercapacitors [J]. Dalton Trans., 2019, 48: 9057
31 ZhangL Y, WangY, HeD L, et al. Poly(vinylidene fluoride)-based nanocomposite employing oriented Bi2S3 nanorods with double-shell structure for high dielectric performance and loss suppression [J]. Compos. Sci. Technol., 2019, 171: 118
32 ChenY, WangD Y, ZhouY L, et al. Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material [J]. Front. Phys., 2019, 14: 013601
33 SunH L, JiangZ F, WuD, et al. Defect-type-dependent near-infrared-driven photocatalytic bacterial inactivation by defective Bi2S3 nanorods [J]. ChemSusChem, 2019, 12: 890
34 MageshwariK, SathyamoorthyR. Nanocrystalline Bi2S3 thin films grown by thio-glycolic acid mediated successive ionic layer adsorption and reaction (SILAR) technique [J]. Mater. Sci. Semicond. Process., 2013, 16: 43
35 XuX M, MengL J, LiY, et al. Bi2S3 nanoribbons-hybridized {001} facets exposed Bi2WO6 ultrathin nanosheets with enhanced visible light photocatalytic activity [J]. Appl. Surf. Sci., 2019, 479: 410
36 YanX, WuZ Y, YangP P, et al. In-situ growth of Bi2S3 nanocrystals on Bi4O5I2 nanostructure with excellent photocatalytic performance under visible light [J]. Catal. Commun., 2019, 123: 91
37 LiuW W, ZhongD L, DaiZ Q, et al. Synergetic utilization of photoabsorption and surface facet in crystalline/amorphous contacted BiOCl-Bi2S3 composite for photocatalytic degradation [J]. J. Alloy. Compd., 2019, 780: 907
38 XuF, XuC Y, ChenH M, et al. The synthesis of Bi2S3/2D-Bi2WO6 composite materials with enhanced photocatalytic activities [J]. J. Alloy. Compd., 2019, 780: 634
39 ZhangC Y, WangW N, ZhaoM L, et al. Construction of ZnxCd1-xS/Bi2S3 composite nanospheres with photothermal effect for enhanced photocatalytic activities [J]. J. Colloid Interface Sci., 2019, 546: 303
40 AkihikoK, SatoshiH. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions [J]. Chem. Lett., 1999, 28: 1103
41 ZhangG, LvF, LiM, et al. Synthesis of nanometer Bi2WO6 synthesized by sol-gel method and its visible-light photocatalytic activity for degradation of 4BS [J]. J. Phys. Chem. Solids, 2010, 71: 579
42 ZhouL, WangW Z, ZhangL S. Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M=W, Mo) photocatalysts [J]. J. Mol. Catal., 2007, 268A: 195
43 TianY, HuaG M, XuW, et al. Bismuth tungstate nano/microstructures: Controllable morphologies, growth mechanism and photocatalytic properties [J]. J. Alloy. Compd., 2011, 509: 724
44 XuC X, WeiX, RenZ H, et al. Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity [J]. Mater. Lett., 2009, 63: 2194
45 ShangM, WangW Z, SunS Z, et al. Bi2WO6 nanocrystals with high photocatalytic activities under visible light [J]. J. Phys. Chem., 2008, 112C: 10407
46 ZhangL S, WangH L, ChenZ G, et al. Bi2WO6 micro/nano-structures: Synthesis, modifications and visible-light-driven photocatalytic applications [J]. Appl. Catal., 2011, 106B: 1
47 KudoA, UedaK, KatoH, et al. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution [J]. Catal. Lett., 1998, 53: 229
48 ShangM, WangW Z, ZhouL, et al. Nanosized BiVO4 with high visible-light-induced photocatalytic activity: Ultrasonic-assisted synthesis and protective effect of surfactant [J]. J. Hazard. Mater., 2009, 172: 338
49 YinW Z, WangW Z, ZhouL, et al. CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation [J]. J. Hazard. Mater., 2010, 173: 194
50 ShangM, WangW Z, RenJ, et al. A novel BiVO4 hierarchical nanostructure: Controllable synthesis, growth mechanism, and application in photocatalysis [J]. CrystEngComm, 2010, 12: 1754
51 ZhaoZ Y, LiZ S, ZouZ G. Electronic structure and optical properties of monoclinic clinobisvanite BiVO4 [J]. Phys. Chem. Chem. Phys., 2011, 13: 4746
52 Martínez-de la CruzA, PérezU M G. Photocatalytic properties of BiVO4 prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation [J]. Mater. Res. Bull., 2010, 45: 135
53 XiG C, YeJ H. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties [J]. Chem. Commun., 2010, 46: 1893
54 YuJ, KudoA. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4 [J]. Adv. Funct. Mater., 2006, 16: 2163
55 LiH B, LiuG C, DuanX C. Monoclinic BiVO4 with regular morphologies: Hydrothermal synthesis, characterization and photocatalytic properties [J]. Mater. Chem. Phys., 2009, 115: 9
56 ShiW D, YanY, YanX. Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin [J]. Chem. Eng. J., 2013, 215/216: 740
57 ZhangY H, YiZ G, WuG H, et al. Novel Y doped BiVO4 thin film electrodes for enhanced photoelectric and photocatalytic performance [J]. J. Photochem. Photobiol., 2016, 327A: 25
58 RohloffM, AnkeB, ZhangS Y, et al. Mo-doped BiVO4 thin films-high photoelectrochemical water splitting performance achieved by a tailored structure and morphology [J]. Sustain. Energ. Fuels, 2017, 1: 1830
59 ZhangB, LiJ, ZhangB Q, et al. Selective oxidation of sulfides on Pt/BiVO4 photocatalyst under visible light irradiation using water as the oxygen source and dioxygen as the electron acceptor [J]. J. Catal., 2015, 332: 95
60 RegmiC, KshetriY K, KimT H, et al. Visible-light-induced Fe-doped BiVO4 photocatalyst for contaminated water treatment [J]. Mol. Catal., 2017, 432: 220
61 ZhouB, ZhaoX, LiuH J, et al. Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions [J]. Appl. Catal., 2010, 99B: 214
62 RegmiC, KshetriY K, PandeyR P, et al. Understanding the multifunctionality in Cu-doped BiVO4 semiconductor photocatalyst [J]. J. Environ. Sci., 2019, 75: 84
63 ZhangA P, ZhangJ Z. Synthesis and characterization of Ag/BiVO4 composite photocatalyst [J]. Appl. Surf. Sci., 2010, 256: 3224
64 RegmiC, KshetriY K, RayS K, et al. Utilization of visible to NIR light energy by Yb+3, Er+3 and Tm+3 doped BiVO4 for the photocatalytic degradation of methylene blue [J]. Appl. Surf. Sci., 2017, 392: 61
65 ShanL W, WangG L, SuriyaprakashJ, et al. Solar light driven pure water splitting of B-doped BiVO4 synthesized via a sol-gel method [J]. J. Alloy. Compd., 2015, 636: 131
66 WeiW, DaiY, HuangB B. First-principles characterization of Bi-based photocatalysts: Bi12TiO20, Bi2Ti2O7, and Bi4Ti3O12 [J]. J. Phys. Chem., 2009, 113C: 5658
67 ChengL J, LiuL Q, WangD F, et al. Synthesis of bismuth molybdate photocatalysts for CO2 photo-reduction [J]. J. CO2 Util., 2019, 29: 196
68 YuH B, JiangL B, WangH, et al. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: A critical review [J]. Small, 2019, 15: 1901008
69 ZhaiH F, LiA D, KongJ Z, et al. Preparation and visible-light photocatalytic properties of BiNbO4 and BiTaO4 by a citrate method [J]. J. Solid State Chem., 2013, 202: 6
70 WangX, LinY, DingX F, et al. Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles [J]. J. Alloy. Compd., 2011, 509: 6585
71 YeL Q, SuY R, JinX L, et al. Recent advances in BiOX (X=Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms [J]. Environ. Sci. Nano, 2014, 1: 90
72 LiJ, YuY, ZhangL Z. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis [J]. Nanoscale, 2014, 6: 8473
73 WangG Z, LuoX K, HuangY H, et al. BiOX/BiOY (X, Y=F, Cl, Br, I) superlattices for visible light photocatalysis applications [J]. RSC Adv., 2016, 6: 91508
74 BhachuD S, MonizS J A, SathasivamS, et al. Bismuth oxyhalides: Synthesis, structure and photoelectrochemical activity [J]. Chem. Sci., 2016, 7: 4832
75 XiaoX, ZhangW D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity [J]. J. Mater. Chem., 2010, 20: 5866
76 RenK X, ZhangK, LiuJ, et al. Controllable synthesis of hollow/flower-like BiOI microspheres and highly efficient adsorption and photocatalytic activity [J]. CrystEngComm, 2012, 14: 4384
77 AiL H, ZengY, JiangJ. Hierarchical porous BiOI architectures: Facile microwave nonaqueous synthesis, characterization and application in the removal of Congo red from aqueous solution [J]. Chem. Eng. J., 2014, 235: 331
78 QinF, ZhaoH P, LiG F, et al. Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis [J]. Nanoscale, 2014, 6: 5402
79 RenJ, WangW Z, ZhangL, et al. Photocatalytic inactivation of bacteria by photocatalyst Bi2WO6 under visible light [J]. Catal. Commun., 2009, 10: 1940
80 Obregón AlfaroS, Martínez-de la CruzA, Torres-MartínezL M, et al. Remove of marine plankton by photocatalysts with Aurivillius-type structure [J]. Catal. Commun., 2010, 11: 326
81 SharmaR, SinghS, VermaA, et al. Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals [J]. J. Photochem. Photobiol., 2016, 162B: 266
82 WangW J, YuY, AnT C, et al. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: Bactericidal performance and mechanism [J]. Environ. Sci. Technol., 2012, 46: 4599
83 XiangZ B, WangY, JuP, et al. Controlled synthesis and photocatalytic antifouling properties of BiVO4 with tunable morphologies [J]. J. Electron. Mater., 2017, 46: 758
84 ChenY, YangW Y, GaoS, et al. Internal polarization modulation in Bi2MoO6 for photocatalytic performance enhancement under visible-light illumination [J]. ChemSusChem, 2018, 11: 1521
85 WuD, WangB, WangW, et al. Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli [J]. J. Mater. Chem., 2015, 3A: 15148
86 JamilT S, MansorE S, Azab El-LiethyM. Photocatalytic inactivation of E. coli using nano-size bismuth oxyiodide photocatalysts under visible light [J]. J. Environ. Chem. Eng., 2015, 3: 2463
87 LongY, WangY, ZhangD, et al. Facile synthesis of BiOI in hierarchical nanostructure preparation and its photocatalytic application to organic dye removal and biocidal effect of bacteria [J]. J. Colloid Interface Sci., 2016, 481: 47
88 LiangJ L, DengJ, LiM, et al. Bactericidal activity and mechanism of Ti-doped BiOI microspheres under visible light irradiation [J]. Colloids Surf., 2016, 147B: 307
89 WangY, LinL, LiF, et al. Enhanced photocatalytic bacteriostatic activity towards Escherichia coli using 3D hierarchical microsphere BiOI/BiOBr under visible light irradiation [J]. Photoch. Photobiol. Sci., 2016, 15: 666
90 RenJ, WangW Z, SunS M, et al. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation [J]. Appl. Catal., 2009, 92B: 50
91 ZhangL S, WongK H, YipH Y, et al. Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: The role of diffusing hydroxyl radicals [J]. Environ. Sci. Technol., 2010, 44: 1392
92 JiaY, ZhanS, MaS L, et al. Fabrication of TiO2-Bi2WO6 binanosheet for enhanced solar photocatalytic disinfection of E. coli: Insights on the mechanism [J]. ACS Appl. Mater. Interfaces, 2016, 8: 6841
93 XiangY H, JuP, WangY, et al. Chemical etching preparation of the Bi2WO6/BiOI p-n heterojunction with enhanced photocatalytic antifouling activity under visible light irradiation [J]. Chem. Eng. J., 2016, 288: 264
94 LiangJ L, LiuF Y, DengJ, et al. Efficient bacterial inactivation with Z-scheme AgI/Bi2MoO6 under visible light irradiation [J]. Water Res., 2017, 123: 632
95 DaiZ, QinF, ZhaoH P, et al. Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis [J]. ACS Catal., 2016, 6: 3180
96 LiangJ L, DengJ, LiM, et al. Bactericidal activity and mechanism of AgI/AgBr/BiOBr0.75I0.25 under visible light irradiation [J]. Colloids Surf., 2016, 138B: 102
97 XiangZ B, WangY, ZhangD, et al. BiOI/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation [J]. J. Ind. Eng. Chem., 2016, 40: 83
98 JuP, WangP, LiB, et al. A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity [J]. Chem. Eng. J., 2014, 236: 430
99 JuP, WangY, SunY, et al. Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation [J]. Dalton Trans., 2016, 45: 4588
100 XiangZ B, WangY, JuP, et al. Facile fabrication of AgI/BiVO4 composites with enhanced visible photocatalytic degradation and antibacterial ability [J]. J. Alloy. Compd., 2017, 721: 622
101 XiangZ B, WangY, YangZ Q, et al. Heterojunctions of β-AgVO3/BiVO4 composites for enhanced visible-light-driven photocatalytic antibacterial activity [J]. J. Alloy. Compd., 2019, 776: 266
102 WangY, LongY, ZhangD. Novel bifunctional V2O5/BiVO4 nanocomposite materials with enhanced antibacterial activity [J]. J. Taiwan Inst. Chem. Eng., 2016, 68: 387
103 WangY, LongY, ZhangD. Facile in situ growth of high strong BiOI network films on metal wire meshes with photocatalytic activity [J]. ACS Sustainable Chem. Eng., 2017, 5: 2454
104 WangY, LongY, YangZ Q, et al. A novel ion-exchange strategy for the fabrication of high strong BiOI/BiOBr heterostructure film coated metal wire mesh with tunable visible-light-driven photocatalytic reactivity [J]. J. Hazard. Mater., 2018, 351: 11
105 YangZ Q, WangY, ZhangD. An integrated multifunctional photoelectrochemical platform for simultaneous capture, detection, and inactivation of pathogenic bacteria [J]. Sens. Actuators B-Chem., 2018, 274: 228
[1] 刘姣, 何其伟, 陈洪, 陈宇, 张昭, 张鉴清. 船舶防污涂料的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(6): 483-488.
[2] 郑纪勇. 海洋生物污损与材料腐蚀[J]. 中国腐蚀与防护学报, 2010, 30(2): 171-176.