Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 463-468    DOI: 10.11902/1005.4537.2019.050
  本期目录 | 过刊浏览 |
模拟人体体液中镁合金的腐蚀行为研究
郏义征1,赵明君2,程世婧3,王保杰2,王硕4,盛立远5,许道奎4()
1. 四川建筑职业技术学院博士后创新实践基地 德阳 618000
2. 沈阳理工大学环境与化学工程学院 沈阳 110159
3. 中国科学院 北京 100864
4. 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
5. 北京大学 深圳研究院人体组织与再生修复深圳重点实验室 深圳 518057
Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid
JIA Yizheng1,ZHAO Mingjun2,CHENG Shijing3,WANG Baojie2,WANG Shuo4,SHENG Liyuan5,XU Daokui4()
1. Innovation and Practice Base for Postdoctors, Sichuan College of Architectural Technology, Deyang 618000, China
2. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
3. Chinese Academy of Sciences, Beijing 100864, China
4. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
5. Shenzhen Key Lab Human Tissue Regenerate & Repair, Shenzhen Institute, Peking University, Shenzhen 518057, China
全文: PDF(4255 KB)   HTML
摘要: 

研究了Mg-6Zn-1.2Y-0.8Nd合金样品在Hank's溶液中经预浸泡处理前后的腐蚀行为。结果表明,表面的腐蚀产物对基体可以起到一定的防护作用。经4 h预浸泡处理后,合金表面形成的产物膜较为均匀,对基体的防护作用最佳,其腐蚀电流密度为1.98 μA/cm2。随着预浸泡时间的进一步延长,合金表面形成的腐蚀产物膜增厚,会发生自身开裂或与基体脱落,加剧了局部腐蚀,致使产物膜对基体的腐蚀防护作用明显下降。经48 h预浸泡处理后,合金的腐蚀电流密度增加至3.64 μA/cm2

关键词 镁合金生物材料产物膜局部腐蚀浸泡    
Abstract

The corrosion behavior of Mg-6Zn-1.2Y-0.8Nd alloy before and after pre-soaking in Hank's solution was comparatively studied. Results revealed that the surface corrosion products formed during pre-shoaking can protect the substrate from corrosion attack to a certain extent. After pre-soaking for 4 h, the product film formed on the surface was relatively uniform and had the best protective effect on the matrix. The corrosion current density was 1.98 μA/cm2. As the pre-soaking time was further extended, the corrosion products film formed on sample surfaces became thicker, and tend to be cracked and detached from the substrate, correspondingly the localized corrosion was accelerated, resulting in the decrease in their protective effect. After pre-soaking for 48 h, the corrosion current density of the alloy increased to 3.64 μA/cm2.

Key wordsMg-alloy    biomaterial    corrosion product film    localized corrosion    immersion
收稿日期: 2019-04-25     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51701129);国家自然科学基金(51871211);德阳市重点科技支撑项目(2014ZZ051);沈阳理工大学博士后启动基金(10500010006)
通讯作者: 许道奎     E-mail: dkxu@imr.ac.cn
Corresponding author: XU Daokui     E-mail: dkxu@imr.ac.cn
作者简介: 郏义征,男,1980年生,副教授

引用本文:

郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 463-468.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.050      或      https://www.jcscp.org/CN/Y2019/V39/I6/463

图1  Mg-6Zn-1.2Y-0.8Nd合金微观组织的SEM像及W相的EDS结果
图2  不同时间预浸泡处理后Mg-6Zn-1.2Y-0.8Nd合金样品在Hank's溶液中的电化学结果
Sample conditionEcorr / VSCEIcorr / μA·cm-2
As-received1.707±0.00314.24±3.85
Pre-immersed for 2 h1.553±0.0022.91±0.36
Pre-immersed for 4 h1.542±0.0031.98±0.25
Pre-immersed for 8 h1.544±0.0022.04±0.35
Pre-immersed for 24 h1.534±0.0022.30±0.20
Pre-immersed for 48 h1.529±0.0033.64±0.55
表1  不同时间预浸泡处理后Mg-6Zn-1.2Y-0.8Nd合金样品极化曲线的拟合结果
图3  在Hank's溶液中经不同时间预浸泡处理后Mg-6Zn-1.2Y-0.8Nd合金样品的表面腐蚀形貌及三维形貌像
图4  在Hank's溶液中预浸泡样品横截面的SEM像和膜层的EDS分析结果
[1] Bakhsheshi-Rad H R, Idris M H, Abdul-Kadir M R, et al. Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys [J]. Mater. Des., 2014, 53: 283
[2] Zhang E L, Yin D S, Xu L P, et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application [J]. Mater. Sci. Eng., 2009, C29: 987
[3] Zhang E L, He W W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content [J]. Mater. Sci. Eng., 2008, A488: 102
[4] Huang J J, Ren Y B, Zhang B C, et al. Study on biocompatility of magnesium and its alloys [J]. Rare Met. Mater. Eng., 2007, 36: 1102
[4] (黄晶晶, 任伊宾, 张炳春等. 镁及镁合金的生物相容性研究 [J]. 稀有金属材料与工程,. 2007, 36: 1102)
[5] Kannan M B, Raman R K S. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid [J]. Biomaterials, 2008, 29: 2306
[6] Zhang X N, Zuo M C, Zhang S X, et al. Advances in clinical research of biodegradable stents [J]. Acta Metall. Sin., 2017, 53: 1215
[6] (张小农, 左敏超, 张绍翔等. 医用可降解血管支架临床研究进展 [J]. 金属学报, 2017, 53: 1215)
[7] Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application [J]. Acta Metall. Sin., 2017, 53: 1227
[7] (郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53: 1227)
[8] Xi T F, Wei L N, Liu J, et al. Research progress in bioresorbable magnesium scaffolds [J]. Acta Metall. Sin., 2017, 53: 1153
[8] (奚廷斐, 魏丽娜, 刘婧等. 镁合金全降解血管支架研究进展 [J]. 金属学报, 2017, 53: 1153)
[9] Yuan G Y, Niu J L. Research progress of biodegradable magnesium alloys for orthopedic applications [J]. Acta Metall. Sin., 2017, 53: 1168
[9] (袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展 [J]. 金属学报, 2017, 53: 1168)
[10] Zeng R C, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials [J]. Adv. Eng. Mater., 2008, 10: B3
[11] Zeng R C, Cui L Y, Jiang K, et al. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly (L- lactic acid) composite coating on Mg- 1Li-1Ca alloy for orthopedic implants [J]. ACS Appl. Mater. Interfaces., 2016, 8: 10014
[12] Wang B J, Xu D K, Wang S D, et al. Fatigue crack initiation of magnesium recent progress in the research about fatigue crack initiation of Mg alloys under elastic stress amplitudes: A review [J]. Front. Mech. Eng., 2019, 14: 113
[13] Qin H, Zhao Y C, An Z Q, et al. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy [J]. Biomaterials., 2015, 53: 211
[14] Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue., 2019, 120: 46
[15] Wang H X, Guan S K, Wang X, et al. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process [J]. Acta Biomater., 2010, 6: 1743
[16] Zhao X, Shi L L, Xu J. Mg-Zn-Y alloys with long-period stacking ordered structure: In vitro assessments of biodegradation behavior [J]. Mater. Sci. Eng., 2013, C33: 3627
[17] Wang B J, Luan J Y, Xu D K, et al. Research progress on the corrosion behavior of magnesium-lithium-based alloys: a review [J]. Acta Metall. Sin. (Engl. Lett.)., 2019, 32: 1
[18] Wang S D, Xu D K, Chen X B, et al. Effect of heat treatment on the corrosion resistance and mechanical properties of an as-forged Mg-Zn-Y-Zr alloy [J]. Corros. Sci., 2015, 92: 228
[19] Xu D K, Han E-H. Effect of quasicrystalline phase on improving the corrosion resistance of a duplex structured Mg-Li alloy [J]. Scr. Mater., 2014, 71: 21
[20] Ju Y L, Kim D H, Lim H K, et al. Effect of volume fraction of qusicrystal on the mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloys [J]. Mater. Sci. Eng., 2007, A449-451: 987
[21] Wang J, Liu R D, Dong X G, et al. Microstructure and mechanical properties of Mg-Zn-Y-Nd-Zr alloys [J]. J. Rare Earths., 2013, 31: 616
[22] Xu X Y, Chen X H, Du W W, et al. Effect of Nd on microstructure and mechanical properties of as-extruded Mg-Y-Zr-Nd alloy [J]. J. Mater. Sci. Technol., 2017, 339: 926
[23] Liu J, Zheng B, Wang P, et al. Enhanced in vitro and in vivo performance of Mg-Zn-Y-Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application [J]. ACS. Appl. Mater. Interfaces., 2016, 8: 17842
[24] Liu J, Wang P, Chu C C, et al. A novel biodegradable and biologically functional arginine-based poly (ester urea urethane) coating for Mg-Zn-Y-Nd alloy: Enhancement in corrosion resistance and biocompatibility [J]. J. Mater. Chem., 2017, B5B: 1787
[25] Zhang X B, Ma Q L, Ba Z X, et al. Microstructure and corrosion behaviour in simulated body fluid of solution treated Mg-Nd-Gd-Sr-Zn-Zr alloys [J]. Rare Met. Mater. Eng., 2017, 46: 1156
[25] (章晓波, 马青龙, 巴志新等. 固溶处理态Mg-Nd-Gd-Sr-Zn-Zr镁合金的显微组织及其在模拟体液中的腐蚀行为 [J]. 稀有金属材料与工程, 2017, 46: 1156)
[26] Zhang X B, Mao L, Yuan G Y, et al. Performances of biodegradable Mg-Nd-Zn-Zr magnesium alloy for cardiovascular stent [J]. Rare Met. Mater. Eng., 2013, 42(6): 1300
[26] (章晓波, 毛琳, 袁广银等. 心血管支架用Mg-Nd-Zn-Zr生物可降解镁合金的性能研究 [J]. 稀有金属材料与工程, 2013, 42(6): 1300)
[27] Zhang X B, Yuan G Y, Wang Z Z. Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg-Nd-Zn-Zr alloy [J]. Mater. Sci. Technol., 2013, 29(1): 111
[28] Kang Y Y, Du B N, Li Y M, et al. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment [J]. J. Mater. Sci. Technol., 2019, 35: 6
[29] Chen T J, Zhang D H, Wang W, et al. Effects of Y content on microstructures and mechanical properties of as-cast Mg-Zn-Nd alloys [J]. China Foundry., 2015, 12: 339.
[30] Xu D K, Han E-H. Effects of icosahedral phase formation on the microstructure and mechanical improvement of Mg alloys: A review [J]. Prog. Nat. Sci: Mater. Int., 2012, 22: 364
[31] Wang B J, Xu D K, Dong J H, et al. Effect of corrosion production films on the in vitro degradation behavior of Mg-3%Al-1%Zn (in wt.%) alloy in Hank's solution [J]. J. Mater. Sci. Technol., 2018, 34: 1756
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[6] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[8] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[9] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[10] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[12] 史伟宁,杨树峰,李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
[13] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[15] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.