Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (1): 38-44    DOI: 10.11902/1005.4537.2019.040
  研究报告 本期目录 | 过刊浏览 |
硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响
师超1,2,邵亚薇2(),熊义1,刘光明1,俞跃龙1,杨志广1,许传钦1
1. 南昌航空大学材料科学与工程学院 南昌 330063
2. 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating
SHI Chao1,2,SHAO Yawei2(),XIONG Yi1,LIU Guangming1,YU Yuelong1,YANG Zhiguang1,XU Chuanqin1
1. College of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2. Materials Science and Chemical Engineering College, Harbin Engineering University, Harbin 150001, China
全文: PDF(5089 KB)   HTML
摘要: 

采用硅烷偶联剂 (KH560) 对微纳米片状磷酸锌 (SZP) 表面进行有机改性制备硅烷偶联剂改性微纳米片状磷酸锌 (KH560-SZP),并通过红外光谱 (FT-IR),扫描电子显微镜 (SEM),电子能谱 (EDS) 等手段对KH560-SZP进行表征;采用电化学阻抗谱 (EIS)、附着力测试、表面形貌观察等方法,研究了KH560-SZP在环氧涂层中分散性状态及KH560-SZP环氧涂层的防腐蚀性能。结果表明:经过改性后的磷酸锌表面覆盖一层固化交联的硅烷交联聚合物,能够在环氧树脂中高效分散,从而提高涂层的屏蔽性能和附着力,进而综合提高涂层防腐蚀性能。

关键词 硅烷偶联剂改性磷酸锌环氧涂层防腐性能界面状态    
Abstract

The submicron-sheet zinc phosphate (SZP) was modified with silane coupling agent (KH560), and then the modified zinc phosphate (KH560-SZP) was characterized by FT-IR, SEM and EDS. Dispersion statuses of SZP and KH560-SZP, as pigments in epoxy coating were comparatively analyzed by SEM. Then, corrosion resistance of epoxy coatings with SZP and KH560-SZP respectively were assessed via EIS, adhesion test and surface morphology observation. The results showed that KH560-SZP, as a pigment coated with cross-linking silane polymer could be dispersed effectively into the epoxy resins. Thus, the barrier performances and adhesion of the coatings were significantly improved. Consequentially, the anti-corrosion performance of the coating was comprehensively improved because due to the addition of the silane coupling agent modified zinc phosphate.

Key wordssilane coupling agent    modified zinc phosphate    epoxy coating    corrosion resistance    interfacial state
收稿日期: 2019-03-25     
ZTFLH:  TG174.46  
基金资助:国家重点研发计划(2016YFB0300604);国家国际科技合作计划项目(2014DFR50560);博士启动基金(EA201901056)
通讯作者: 邵亚薇     E-mail: shaoyawei@hrbeu.edu.cn
Corresponding author: Yawei SHAO     E-mail: shaoyawei@hrbeu.edu.cn
作者简介: 师超,男,1989年生,博士,讲师

引用本文:

师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
Chao SHI, Yawei SHAO, Yi XIONG, Guangming LIU, Yuelong YU, Zhiguang YANG, Chuanqin XU. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 38-44.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.040      或      https://www.jcscp.org/CN/Y2020/V40/I1/38

图1  SZP颜料和KH560-SZP颜料的FT-IR谱
图2  SZP颜料和KH560-SZP颜料的微观形貌及EDS分析结果
PigmentSiOPZn
SZP065.4815.9118.32
KH560-SZP5.0562.2414.1518.56
表1  SZP颜料和KH560-SZP颜料中各元素含量 (atomic fraction / %)
图3  SZP和KH560-SZP颜料在涂层中的分散状态
图4  不同浸泡时间下涂层/金属体系的等效电路图
图5  两种涂层浸泡不同时间后的EIS测试结果
图6  SZP和KH560-SZP涂层浸泡不同时间后的涂层电阻
图7  SZP和KH560-SZP涂层的Rt随浸泡时间的变化曲线
图8  SZP和KH560-SZP涂层不同浸泡时间下的附着力
图9  浸泡700 h后涂层的宏观腐蚀形貌和拉拔实验后的表面状态
[1] Shang C J, Li X C, Xie Z J. Development of high performance steel for marine engineering [J]. Angang Technol., 2018, (1): 1
[1] (尚成嘉, 李秀程, 谢振家. 高性能海洋工程用钢的智慧研发之一 [J]. 鞍钢技术, 2018, (1): 1)
[2] Shi C. The synthesis of submicron-sheet zinc phosphate and its influence on anti-corrosion performance of epoxy coating [D]. Harbin Engineering University, 2018
[2] (师超. 微纳米片状磷酸锌的制备及其对环氧涂层防腐性能的影响 [D]. 哈尔滨工程大学, 2018)
[3] Bhoge Y E, Patil V J, Deshpande T D, et al. Synthesis and anticorrosive performance evaluation of zinc vanadate pigment [J]. Vacuum, 2017, 145: 290
[4] Deyá C, Blustein G, Del Amo B, et al. Evaluation of eco-friendly anticorrosive pigments for paints in service conditions [J]. Prog. Org. Coat., 2010, 69: 1
[5] Langer E, Kuczyńska H, Kamińska-Tarnawska E, et al. Self-stratifying coatings containing barrier and active anticorrosive pigments [J]. Prog. Org. Coat., 2011, 71: 162
[6] Naderi R, Mahdavian M, Darvish A. Electrochemical examining behavior of epoxy coating incorporating zinc-free phosphate-based anticorrosion pigment [J]. Prog. Org. Coat., 2013, 76: 302
[7] Heydarpour M R, Zarrabi A, Attar M M, et al. Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments [J]. Prog. Org. Coat., 2014, 77: 160
[8] Shi Q M, Shao Y W, Zhang T, et al. Protection dimension of scratched zinc phosphate/epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 389
[8] (石秋梅, 邵亚薇, 张涛等. 磷酸锌对环氧涂层划痕的保护尺寸研究 [J]. 中国腐蚀与防护学报, 2011, 31: 389)
[9] Pang R, Zuo Y, Tang Y M, et al. Failure behaviors of epoxy/acrylic polyurethane organic coatings in corrosive media by EIS [J]. CIESC J., 2010, 61: 2656
[9] (庞然, 左禹, 唐聿明等. 环氧/聚氨酯涂层在4种环境中失效行为的EIS [J]. 化工学报, 2010, 61: 2656)
[10] Cao J, Shao Y W, Zhang T, et al. Roles of zinc phosphate on the corrosion of the scratched epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 437
[10] (曹佳, 邵亚薇, 张涛等. 磷酸锌对环氧涂层破损处金属的缓蚀作用 [J]. 中国腐蚀与防护学报, 2009, 29: 437)
[11] Yu H W, Yang S S, Ruan H M, et al. Recovery of uranium ions from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite [J]. Appl. Clay Sci., 2015, 111: 67
[12] Li X X, Zheng B Y, Xu L M, et al. Study on properties of conductive adhesive prepared with silver nanoparticles modified by silane coupling agent [J]. Rare Met. Mater. Eng., 2012, 41: 24
[13] Yan S P, He W, Sun C Y, et al. The biomimetic synthesis of zinc phosphate nanoparticles [J]. Dyes Pigments, 2009, 80: 254
[14] Yuan A Q, Liao S, Tong Z F, et al. Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study [J]. Mater. Lett., 2006, 60: 2110
[15] Zhang Y J, Shao Y W, Liu X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel [J]. Prog. Org. Coat., 2017, 111: 240
[16] Zhang Y J, Shao Y W, Zhang T, et al. The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of Az91d magnesium alloy [J]. Corros. Sci., 2011, 53: 3747
[17] Gupta G, Birbilis N, Cook A B, et al. Polyaniline-lignosulfonate/epoxy coating for corrosion protection of Aa2024-T3 [J]. Corros. Sci., 2013, 67: 256
[1] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[2] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[3] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[4] 左银泽, 陈亮, 冯清, 高延敏. PFOA/硅烷偶联剂分子自组装膜对环氧带锈涂层性能影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 554-560.
[5] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[6] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[7] 崔学军,代鑫,郑冰玉,张颖君. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
[8] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[9] 张山,周丽娜,简璐,王煦. 聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[10] 孙伟, 尹桂来, 刘福春, 唐囡, 韩恩厚, 万军彪, 柯伟, 邓静伟. 装载缓蚀剂的纳米SiO2对环氧涂层耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 2015, 35(5): 447-454.
[11] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[12] 元辛, 岳珠峰, 温世峰, 李磊. 铝合金表面有机硅环氧涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 375-381.
[13] 刘樱,刘莉,李瑛,王福会. 高静水压力对水在环氧涂层中传输行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 203-209.
[14] 石秋梅,邵亚薇,张涛,孟国哲,陈琪昊. 磷酸锌对环氧涂层划痕的保护尺寸研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
[15] 唐俊文,邵亚薇,张涛,孟国哲,王福会. 循环压力对环氧涂层在模拟深海环境中失效行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 275-281.