Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 176-184    DOI: 10.11902/1005.4537.2019.007
  研究报告 本期目录 | 过刊浏览 |
EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究
许萍(),张硕,司帅,张雅君,汪长征
北京建筑大学 水环境国家级实验教学示范中心 城市雨水系统与水环境省部共建教育部重点实验室北京 100044
Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS
Ping XU(),Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG
National Demonstration Center for Experimental Water Environment Education, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
全文: PDF(3981 KB)   HTML
摘要: 

采用牛白蛋白和右旋糖酐40模拟EPS中的蛋白质、多糖,开展了蛋白质、多糖对碳钢腐蚀速率、表面形貌、腐蚀产物、电化学行为以及浸涂前后蛋白质、多糖官能团变化研究。结果表明:碳钢浸涂蛋白质、多糖后,由于氧含量降低使腐蚀产物中具有致密性的Fe3O4含量分别上升了113.6%和145.5%,腐蚀速率分别下降了17.7%和24.0%。对EIS进行等效电路拟合后表明,未浸涂的等效电路为R(QR),浸涂蛋白质、多糖后等效电路为R(Q(R(QR)))。红外光谱实验结果显示,浸涂前后蛋白质分子中的—C=O—和—COO—,以及多糖分子中的—C—OH,—CH3,—CH2—和—COO—出现峰值减弱或消失的现象,表明碳钢浸涂蛋白质、多糖后表面形成了一层保护层,上述官能团参与了腐蚀反应且对保护层的形成起着关键作用。

关键词 蛋白质多糖碳钢腐蚀保护层微生物胞外聚合物    
Abstract

Extracellular polymeric substance (EPS) presents certain inhibitory effect on metal corrosion, which mainly composed of protein, polysaccharide. In the study here, Bovine serum albumin (BSA) and Dextran 40 were used to represent the protein and polysaccharide respectively, with which the carbon steel was coated by dip-coating method. Thereafter, the corrosion behavior of carbon steel without and with coatings of BSA and Dextrand 40 was studied via immersion test in an artificial corrosive solution of NaCl 58.5 mg/L+Na2SO4 213 mg/L+NaHCO3 4.2 mg/L. The corrosion rate, surface morphology, corrosion products, and electrochemical behavior of the carbon steel, as well as the changes in functional groups of the BSA and Dextran 40 before and after dip-coating on carbon steel are mainly concerned in the study. Results shown that the corrosion products formed on the steel coated with BSA and Dextran 40 contained the amounts of Fe3O4 up to 113.6% and 145.5% of that on the plain steel, correspondingly, the corrosion rate decreased by 17.7%, 24.0%, respectively. The equivalent circuit of the plain steel is R(QR) and the dip-coating ones could be fitted with R(Q(R(QR))). Infrared spectroscopy revealed that, after dip-coating on the steel surface, the relevant peaks of the —C=O—, —COO— of protein, and the —C—OH, —CH3, —CH2—, —COO— of polysaccharide weakened or even disappeared, which indicated that after dip-coating a protective film may form on the surface of carbon steel. The fact implies that the functional groups of BSA and Dextran 40 may take part in the corrosion process, and play a key role on the formation of protective film.

Key wordsprotein    polysaccharide    carbon steel    corrosion    protective layer    EPS
收稿日期: 2019-01-10     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51578035);北京市属高校基本科研业务费专项资金,北京建筑大学基金(00331615008);城市雨水系统和水环境省部共建教育部重点实验室项目(PXM2014014210000057)
通讯作者: 许萍     E-mail: xuping@bucea.edu.cn
Corresponding author: Ping XU     E-mail: xuping@bucea.edu.cn
作者简介: 许萍,女,1971年生,博士

引用本文:

许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
Ping XU, Shuo ZHANG, Shuai SI, Yajun ZHANG, Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 176-184.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.007      或      https://www.jcscp.org/CN/Y2019/V39/I2/176

图1  实验装置示意图
图2  未浸涂和浸涂蛋白质/多糖后的碳钢试片腐蚀速率
图3  未浸涂和浸涂蛋白质/多糖后的碳钢试样在浸泡16 d后表面形貌和能谱分析
图4  未浸涂和浸涂蛋白质/多糖后的碳钢试样在浸泡16 d后的表面XRD分析结果
图5  碳钢电极浸泡在纯水、蛋白质溶液和多糖溶液中的Nyquist图
图7  电化学阻抗谱拟合的等效电路图
ConditionRs / Ω·cm2Cb / μF·cm-2nbRb / Ω·cm2Cf / μF·cm-2nfRP / Ω·cm2n
Water-1 h4.67×102---------3.77×10-4---1.92×1037.15×10-1
Water-3 h4.54×102---------3.95×10-4---1.89×1037.72×10-1
Water-6 h4.24×102---------4.77×10-4---1.83×1038.09×10-1
Water-9 h4.12×102---------4.93×10-4---1.63×1038.19×10-1
Water-12 h4.39×102---------4.98×10-4---1.62×1037.56×10-1
Water-18 h5.17×102---------6.25×10-4---1.60×1037.18×10-1
Water-24 h5.27×102---------6.64×10-4---1.42×1037.90×10-1
Protein-1 h7.12×1023.24×10-88.39×10-13.08×1021.08×10-47.57×10-11.70×103---
Protein-3 h7.16×1023.78×10-88.26×10-14.17×1021.19×10-48.72×10-11.65×103---
Protein-6 h7.87×1023.81×10-89.11×10-14.29×1021.51×10-48.24×10-11.60×103---
Protein-9 h8.11×1024.06×10-89.02×10-14.72×1022.11×10-48.20×10-11.56×103---
Protein-12 h8.02×1024.30×10-89.00×10-15.35×1022.46×10-49.29×10-11.49×103---
Protein-18 h7.25×1024.46×10-89.23×10-15.35×1023.02×10-48.06×10-11.61×103---
Protein-24 h7.74×1024.96×10-89.13×10-16.23×1023.53×10-48.21×10-12.04×103---
Polysaccharide-1 h7.47×1023.36×10-89.34×10-15.25×1025.53×10-48.81×10-11.75×103---
Polysaccharide-3 h7.39×1023.45×10-88.32×10-15.31×1026.44×10-48.68×10-11.67×103---
Polysaccharide-6 h7.27×1023.53×10-87.18×10-15.50×1026.51×10-48.64×10-11.65×103---
Polysaccharide-9 h7.13×1023.66×10-88.58×10-15.63×1027.93×10-48.73×10-11.81×103---
Polysaccharide-12 h8.14×1023.69×10-88.14×10-15.87×1028.83×10-48.67×10-11.97×103---
Polysaccharide-18 h8.03×1024.10×10-89.73×10-15.97×1021.07×10-38.79×10-12.13×103---
Polysaccharide-24 h7.90×1024.70×10-89.72×10-16.08×1021.08×10-37.37×10-12.14×103---
表1  在纯水以及蛋白质溶液和多糖溶液浸涂24 h过程中碳钢电极等效电路拟合参数
图6  碳钢电极浸泡在纯水、蛋白质溶液和多糖溶液中的Bode图
图8  纯蛋白质、多糖粉末和经蛋白质、多糖溶液浸涂24 h后碳钢试样腐蚀产物的红外光谱图
图9  “络合物-腐蚀产物”保护层的形成机理图
[1] Xu P. Microbiological characteristic of recycling cooling water system makeup by municipal reclaimed water in a power plant [D]. Beijing: Beijing Jiaotong University, 2013
[1] 许萍. 市政再生水补水的电厂循环冷却水系统微生物特征及控制技术研究 [D]. 北京: 北京交通大学, 2013
[2] Liu H W, Ge T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
[3] Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
[4] Stadler R, Wei L, Fürbeth W, et al. Influence of bacterial exopolymers on cell adhesion of desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS) [J]. Mater. Corros., 2010, 61: 1008
[5] Dong Z H, Liu T, Liu H F. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion [J]. Biofouling, 2011, 27: 487
[6] Dong Y H, Guo N, Liu T, et al. Effect of extracellular polymeric substances isolated from Vibrio natriegens on corrosion of carbon steel in seawater [J]. Corros. Eng., Sci. Technol., 2016, 51: 455
[7] Finkenstadt V L, C?té G L, Willett J L. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J]. Biotechnol. Lett., 2011, 33: 1093
[8] Jin J T, Wu G X, Zhang Z H, et al. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater [J]. Bioresour. Technol., 2014, 165: 162
[9] Ignatova-Ivanova T, Ivanov R. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors [J]. Acta Sci. Nat., 2016, 3: 51
[10] Li F S, An M Z, Duan D X. Corrosion inhibition of stainless steel by a sulfate-reducing bacteria biofilm in seawater [J]. Int. J. Miner., Metall. Mater., 2012, 19: 717
[11] Flemming H C, Wingender J. The Biofilm Matrix [J]. Nat. Rev. Microbiol., 2010, 8: 623
[12] Beech I B, Zinkevich V, Tapper R, et al. Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry [J]. J. Microbiol. Meth., 1999, 36: 3
[13] Urbain V, Block J C, Manem J. Bioflocculation in activated slud-ge: An analytic approach [J]. Water Res., 1993, 27: 829
[14] Keiding K, Nielsen P H. Desorption of organic macromolecules from activated sludge: Effect of ionic composition [J]. Water Res., 1997, 31: 1665
[15] Zhang F, Pan J S, Claesson P M. Electrochemical and AFM studies of mussel adhesive protein (Mefp-1) as corrosion inhibitor for carbon steel [J]. Electrochim. Acta, 2011, 56: 1636
[16] Ghafari M D, Bahrami A, Rasooli I, et al. Bacterial exopolymeric inhibition of carbon steel corrosion [J]. Int. Biodeterior. Biodegrad., 2013, 80: 29
[17] Zhang H X, Wang D D, Wang F, et al. Corrosion inhibition of mild steel in hydrochloric acid solution by quaternary ammonium salt derivatives of corn stalk polysaccharide (QAPS) [J]. Desalination, 2015, 372: 57
[18] Finkenstadt V L, Bucur C B, C?té G L, et al. Bacterial exopolysaccharides for corrosion resistance on low carbon steel [J]. J. Appl. Polym. Sci., 2017, 134: 45032
[19] Mobin M, Rizvi M. Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1 M HCl solution [J]. Carbohydr. Polym., 2017, 160: 172
[20] Xu P, Si S, Zhang Y J, et al. Effect of extracellular polymeric substances (EPS) on anti-corrosion behavior of metals [J]. Corros. Prot., 2016, 37: 384
[20] 许萍, 司帅, 张雅君等. 微生物胞外聚合物 (EPS) 对金属耐蚀性的影响 [J]. 腐蚀与防护, 2016, 37: 384
[21] Guo X M, Li C G, Chen W, et al. GB/T 18175-2014 Determination of corrosion inhibition performance of water treatment agents-rotation specimen method [S]. Beijing: China Standard Press, 2014
[21] 郭喜民, 李成国, 陈伟等. GB/T 18175-2014水处理剂缓蚀性能的测定 旋转挂片法 [S]. 北京: 中国标准出版社, 2014
[22] Chongdar S, Gunasekaran G, Kumar P. Corrosion inhibition of mild steel by aerobic biofilm [J]. Electrochim. Acta, 2005, 50: 4655
[23] Stadler R, Fuerbeth W, Harneit, et al. First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates [J]. Electrochim. Acta, 2008, 54: 91
[24] Harimawan A, Ting Y P. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion [J]. Colloids Surf., 2016, 146B: 459
[25] Wang J. Inhibition behavior of Lactobacillus reuteri extracellular polymeric substances on carbon steel corrosion [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2015
[25] 王婧. 罗伊氏乳杆菌胞外聚合物抑制碳钢腐蚀行为研究 [D]. 北京: 北京建筑大学, 2015
[26] Liu S N, Su W, Wei Z F, et al. Corrosion behavior analysis of carbon steel in natural and sterile seawater [J]. Equip. Environ. Eng., 2013, 10(4): 16
[26] 刘世念, 苏伟, 魏增福等. 碳钢在自然海水和灭菌海水中的腐蚀行为分析 [J]. 装备环境工程, 2013, 10(4): 16
[27] Hu J Y. Study on the corrosion mechanism and anticorrosion methods of carbon steel in RO product waste of seawater [D]. Wuhan: Wuhan University, 2013
[27] 胡家元. 碳钢在海水淡化一级反渗透产水中腐蚀机理及防腐方法研究 [D]. 武汉: 武汉大学, 2013
[28] Benali O, Abdelmoula M, Refait P, et al. Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: The transformation of green rust to ferrihydrite [J]. Geochim. Cosmochim. Acta, 2001, 65: 1715
[29] Liu H W, Xu D K, Dao A Q, et al. Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris [J]. Corros. Sci., 2015, 101: 84
[30] Zhang H Y, Tian Y M, Wan J M, et al. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water [J]. Appl. Surf. Sci., 2015, 357: 236
[31] Beech I B, Sunner J. Biocorrosion: Towards understanding interactions between biofilms and metals [J]. Curr. Opin. Biotechnol., 2004, 15: 181
[32] Moradi M, Song Z L, Tao X. Introducing a novel bacterium, Vibrio neocaledonicus sp., with the highest corrosion inhibition efficiency [J]. Electrochem. Commun., 2015, 51: 64
[33] Huo Y N, Liu S, Lu Z. Research on synthesis and behavior of Polyaspartic acid—A new type polymeric scale inhibitors [J]. Fine Chem., 2000, 17: 581
[33] 霍宇凝, 刘珊, 陆柱. 新型聚合物阻垢剂聚天冬氨酸的合成与性能 [J]. 精细化工, 2000, 17: 581
[34] Ye X Q, Peng T Y, Ji Y X, et al. Application progress of microorganism extracellular polymeric substances in environmental engineering [J]. J. Hangzhou Norm. Univ. (Nat. Sci. Ed.), 2016, 15: 387
[34] 叶小青, 彭亭瑜, 姬玉欣等. 微生物胞外聚合物在环境工程中的应用进展 [J]. 杭州师范大学学报 (自然科学版), 2016, 15: 387
[35] Scheerder J, Breur R, Slaghek T, et al. Exopolysaccharides (EPS) as anti-corrosive additives for coatings [J]. Prog. Org. Coat., 2012, 75: 224
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.