Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (1): 25-30    DOI: 10.11902/1005.4537.2018.185
  研究报告 本期目录 | 过刊浏览 |
Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究
王乐1,2,易丹青1,2,刘会群2(),蒋龙3,冯春3
1. 中南大学轻合金研究院 长沙 410083
2. 中南大学材料科学与工程学院 长沙 410083
3. 中国石油集团石油管工程技术研究院 西安 710065
Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism
WANG Le1,2,YI Danqing1,2,LIU Huiqun2(),JIANG Long3,FENG Chun3
1. Light Alloy Research Institute, Central South University, Changsha 40083, China
2. School of Materials Science and Engineering, Central South University, Changsha 410083, China
3. Tubular Goods Research Institute of CNPC, Xi'an 710065, China
全文: PDF(3129 KB)   HTML
摘要: 

利用电化学测试、EDS以及XPS,研究了Ru对Ti-6Al-4V (TC4) 合金在HCl溶液中腐蚀行为的影响,并结合对腐蚀产物和元素随深度分布的分析,探讨了Ru对TC4合金耐蚀性的影响机理。结果表明,添加Ru使TC4合金在10% (质量分数) HCl溶液中腐蚀电位升高,腐蚀电流密度降低,钝化电流基本保持不变;而使其在15% (质量分数) HCl溶液中的腐蚀速率降低,耐蚀性提高。TC4合金在HCl溶液中主要腐蚀产物为TiO2,Al2O3和V2O5。在反应过程中,Ru起到有效的阴极改性作用,促进TiO2钝化膜在表面沉积,使钝化膜增厚一倍,进而提高了钝化膜的致密性,使TC4合金的耐蚀性得到有效提高。

关键词 Ti-6Al-4V钛合金Ru电化学XPS耐蚀性机理    
Abstract

The effect of Ru addition on the corrosion behavior of Ti-6Al-4V (TC4) alloy in HCl solution were studied by means of electrochemical method, energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion products and concentration variation of elements along surface depth were analyzed. The results showed that, the addition of Ru increased the corrosion potential of TC4 alloy in 10% (mass fraction) HCl solution from -0.585 V to -0.529 V, and the corrosion current density decreased from 6.193×10-5 A/cm2 to 2.750×10-5 A/cm2. The passive current densities changed a little, from 2.335×10-5 A/cm2 to 2.608×10-5 A/cm2. The addition of Ru reduced the corrosion rate of TC4 alloy in 15% (mass fraction) HCl solution from 1.48 mm/a to 0.94 mm/a as well. According to XPS results, the main corrosion products of TC4 alloy after corrosion in HCl solution were TiO2, Al2O3 and V2O5. During the corrosion, Ru played an effective role in cathodic modification, promoted the deposition of TiO2 passive film on the surface and thickened the passive film by one time. Therefore, Ru increased the denseness of the passive film, thereby improved the corrosion resistance of TC4 alloy effectively.

Key wordsTi-6Al-4V alloy    Ru    electrochemical    XPS    corrosion resistance mechanism
收稿日期: 2018-12-24     
ZTFLH:  TG146.2  
基金资助:国家科技重大专项(2016ZX05020-002)
通讯作者: 刘会群     E-mail: liuhuiqun@csu.edu.cn
Corresponding author: Huiqun LIU     E-mail: liuhuiqun@csu.edu.cn
作者简介: 王乐,男,1993年生,硕士生

引用本文:

王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
Le WANG, Danqing YI, Huiqun LIU, Long JIANG, Chun FENG. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 25-30.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.185      或      https://www.jcscp.org/CN/Y2020/V40/I1/25

AlloyAlVRuTi
TC45.923.83---Bal.
TC4-Ru5.893.870.093Bal.
表1  TC4和TC4-Ru合金的化学成分 (mass fraction / %)
图1  TC4和TC4-Ru合金在10%HCl溶液中的开路电位
图2  TC4和TC4-Ru合金在10%HCl溶液中的极化曲线
AlloyEcorrVIcorrA·cm-2IpassA·cm-2bcmV·dec-1
TC4-0.585±0.017(6.193±0.054)×10-5(2.335±0.010)×10-5-108±23
TC4-Ru-0.529±0.021(2.750±0.067)×10-5(2.608±0.006)×10-5-256±11
表2  TC4和TC4-Ru合金在10%HCl溶液中的阳极极化参数
图3  TC4和TC4-Ru合金在37 ℃下15%HCl溶液中的腐蚀速率
图4  TC4和TC4-Ru合金在37 ℃下15%HCl溶液中腐蚀3 h后的表面形貌
图5  TC4-Ru合金在HCl溶液中腐蚀10 d后的表面形貌
PointAlVRu
17.563.241.87
27.723.022.10
38.112.762.00
表3  图5中标注点的EDS分析结果 (mass fraction / %)
图6  TC4和TC4-Ru合金在37 ℃下15%HCl溶液中腐蚀10 d后表面的XPS谱
图7  TC4和TC4-Ru合金在37 ℃下15%HCl溶液中腐蚀10 d后Ti 2p峰随刻蚀深度的变化
[1] Hu Q X. Titanium application and its prospects [J]. Titanium Ind. Proc., 2003, 20(4): 11
[1] (胡清熊. 钛的应用及前景展望 [J]. 钛工业进展, 2003, 20(4): 11)
[2] Huang B Y, Li C G, Shi L K. China Materials Engineering Dictionary. Nonferrous Metal Materials Engineering [M]. Beijing: Chemical Industry Press Co., Ltd., 2006
[2] (黄伯云, 李成功, 石立开. 中国材料工程大典?有色金属材料工程 [M]. 北京: 化学工业出版社, 2006)
[3] Mu X, Wei J, Dong J H, et al. Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone [J]. Acta Metall. Sin., 2012, 48: 420
[3] (穆鑫, 魏洁, 董俊华等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究 [J]. 金属学报, 2012, 48: 420)
[4] Stipani?ev M, Turcu F, Esnault L, et al. Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater environment [J]. Electrochim. Acta, 2013, 113: 390
[5] Xin S S, Li M C. Electrochemical corrosion characteristics of type 316L stainless steel in hot concentrated seawater [J]. Corros. Sci., 2014, 81: 96
[6] Hoseinieh S M, Homborg A M, Shahrabi T, et al. A novel approach for the evaluation of under deposit corrosion in marine environments using combined analysis by electrochemical impedance spectroscopy and electrochemical noise [J]. Electrochim. Acta, 2016, 217: 226
[7] Louren?o M I, Netto T A, Plácido J C R. Aluminum drill pipes: Material and design developments [A]. ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering [C]. American Society of Mechanical Engineers, Estoril, 2008: 265
[8] Gelfgat M Y, Geise J, Paff G. Stratigrafy drilling in deep water with aluminum drill pipes application [A]. SPE/IADC Drilling Conference [C]. Amsterdam, 1997
[9] Liao M S, Yang B L. The opportunity and challenge to new trend in current world petroleum equipment [J]. Oil Field Equip., 2007, 36(9): 1
[9] (廖谟圣, 杨本灵. 世界石油设备发展的新特点及机遇与挑战 [J]. 石油矿场机械, 2007, 36(9): 1)
[10] Liu W Y, Zhu Y K, Lin Y H, et al. Influence of heat treatment on microstructure and mechanical properties of TC4 titanium alloy [J]. Mater. Rev., 2013, 27(18): 108
[10] (刘婉颖, 朱毅科, 林元华等. 热处理对TC4钛合金显微组织和力学性能的影响 [J]. 材料导报, 2013, 27(18): 108)
[11] Schutz R W. 2003 F.N. speller award lecture: Platinum group metal additions to titanium: A highly effective strategy for enhancing corrosion resistance [J]. Corrosion, 2003, 59: 1043
[12] Schutz R W, Porter R L, Horrigan J M. Qualifications of Ti-6%Al-4%V-Ru alloy production tubulars for aggressive fluoride-containing mobile bay well service [J]. Corrosion, 2000, 56: 1170
[13] Ueda M, Kudo T, Kitayama S, et al. Corrosion behavior of titanium alloys in a sulfur-containing H2S-CO2-Cl- environment [J]. Corrosion, 1992, 48: 79
[14] Atapour M, Pilchak A, Frankel G S, et al. Corrosion behavior of Ti-6Al-4V with different thermomechanical treatments and microstructures [J]. Corrosion, 2010, 66: 065004
[15] Yu S Y. Effects of Nb and Zr alloying additions on the activation behavior of Ti in hydrochloric acid [J]. J. Electrochem. Soc., 1999, 146: 4429
[16] Yu S Y, Scully J R. Corrosion and passivity of Ti-13%Nb-13%Zr in comparison to other biomedical implant alloys [J]. Corrosion, 1997, 53: 965
[17] Levy M. Anodic behavior of titanium and commercial alloys in sulfuric acid [J]. Corrosion, 1967, 23: 236
[18] Cramer S D, B S C eds Jr. Corrosion: Fundamental Testing and Protection [M]. ASM Handbook 13A. Materials Park: ASM International, 2003
[19] Chen J R, Tsai W T. In situ corrosion monitoring of Ti-6Al-4V alloy in H2SO4/HCl mixed solution using electrochemical AFM [J]. Electrochim. Acta, 2011, 56: 1746
[20] Blackwood D J, Peter L M, Williams D E. Stability and open circuit breakdown of the passive oxide film on titanium [J]. Electrochim. Acta, 1988, 33: 1143
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[6] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[8] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[9] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[10] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[13] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[14] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[15] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.