Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 536-542    DOI: 10.11902/1005.4537.2018.168
  研究报告 本期目录 | 过刊浏览 |
显微组织对X100管线钢氢致开裂及氢捕获行为影响
袁玮,黄峰(),甘丽君,戈方宇,刘静
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel
YUAN Wei,HUANG Feng(),GAN Lijun,GE Fangyu,LIU Jing
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(5759 KB)   HTML
摘要: 

依据NACE TM 0284-2011标准评估了不同显微组织X100管线钢的氢致开裂 (HIC) 敏感性,采用场发射扫描电镜、氢显等手段观察了钢中HIC裂纹的萌生和扩展以及H的聚集,借助于氢渗透动力学参数分析了X100管线钢不同显微组织试样的氢捕获效率与HIC敏感性的内在关联。结果表明,具有不同显微组织的X100管线钢HIC敏感性依次为:原始铁素体-贝氏体组织试样>炉冷处理的块状铁素体组织试样>风冷处理的针状铁素体组织试样;钢中组织对氢的捕获效率越高,钢材对HIC敏感性越大;H原子容易在夹杂物和基体之间的界面处聚集,钢中的MnS夹杂、Ca-Al-Si-O复合夹杂和MnO夹杂均为HIC裂纹萌生源。

关键词 X100管线钢组织HIC敏感性氢捕获    
Abstract

The hydrogen induced cracking (HIC) sensitivity of X100 pipeline steels with different microstructures was evaluated according to the NACE TM 0284-2011 standard. While, the initiation and propagation of HIC, and the aggregation of hydrogen atoms in the steel were characterized via field emission scanning electron microscopy (FE-SEM) and hydrogen microprint technique. The relationship between hydrogen trapping efficiency and HIC sensitivity of X100 pipeline steels with different microstructure was analyzed by using kinetic parameters of hydrogen permeation. The results show that the HIC susceptibility of X100 pipeline steels with different microstructure could be ranked as follows: original specimen with ferrite-bainite microstructure>furnace-cooling specimen with massive ferrite microstructure>wind-cooling specimen with acicular ferrite microstructure. The microstructure has higher trapping efficiency, the more susceptible to HIC is. Hydrogen atoms tend to aggregate at the interface between inclusion and matrix, and the HIC could initiate at MnS inclusion, Ca-Al-Si-O composite inclusion and MnO inclusion in the steels.

Key wordsX100 pipeline steel    microstructure    HIC susceptibility    hydrogen trapping
收稿日期: 2018-11-13     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51871172)
通讯作者: 黄峰     E-mail: Huangfeng@wust.edu.cn
Corresponding author: Feng HUANG     E-mail: Huangfeng@wust.edu.cn
作者简介: 袁玮,女,1988年生,博士生

引用本文:

袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
Wei YUAN, Feng HUANG, Lijun GAN, Fangyu GE, Jing LIU. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 536-542.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.168      或      https://www.jcscp.org/CN/Y2019/V39/I6/536

图1  电化学渗氢装置
图2  氢显实验流程
图3  热处理前后X100管线钢的显微组织
图4  HIC敏感性测试后X100管线钢表面形貌
SampleDetecting sectionCSR / %CLR / %CTR / %
Original14.8143.010.0
28.4138.116.7
35.1126.210.0
Average6.1135.812.2
Furnace cooling13.3100.03.3
23.3100.03.3
32.678.63.3
Average3.192.93.3
Wind cooling1000
23.3100.03.3
32.781.03.3
Average2.060.32.2
Anti-HIC standard threshold value≦1.5≦15.0≦3.0
表1  X100管线钢HIC敏感性参数
图5  X100管线钢HIC裂纹扩展形貌
图6  X100管线钢HIC裂纹中夹杂物的BSE图及EDS结果
图7  Ca-Al-Si-O夹杂物周围氢显形貌及EDS结果
图8  X100管线钢的电化学氢渗透曲线
ConditionJL mol·cm-1·s-1Deffm2·s-1Cappmol·m-3NT m-3
Original6.2×10-121.3×10-104.89.4×1025
Furnace cooling1.5×10-115.1×10-102.91.4×1025
Air cooling2.0×10-118.3×10-102.47.0×1024
表2  X100管线钢氢渗透动力学参数
[1] Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216
[2] Saleh A A, Hejazi D, Gazder A A, et al. Investigation of the effect of electrolytic hydrogen charging of X70 steel: II. Microstructural and crystallographic analyses of the formation of hydrogen induced cracks and blisters [J]. Int. J. Hydrog. Energy, 2016, 41: 12424
[3] Amin L V, Miresmaeili R, Abdollah-Zadeh A. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in X65 steel [J]. Mater. Sci. Eng., 2017, A679: 87
[4] Hejazi D, Haq A J, Yazdipour N, et al. Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking [J]. Mater. Sci. Eng., 2012, A551: 40
[5] Qu Y M, Huang F, Liu J, et al. Influence of microstructure on hydrogen induced cracks susceptibility and hydrogen trapping efficiency for X80 pipeline steel [J]. Chin. J. Mater. Res., 2010, 24: 508
[5] (曲炎淼, 黄峰, 刘静等. 显微组织对X80钢氢致裂纹敏感性和氢捕获效率的影响 [J]. 材料研究学报, 2010, 24: 508)
[6] Mohtadi-Bonab M A, Szpunar J A, Razavi-Tousi S S. A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels [J]. Eng. Fail. Anal., 2013, 33: 163
[7] Li J, Gao X H, Du L X, et al. Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel [J]. J. Mater. Sci. Technol., 2017, 33: 1504
[8] Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, A528: 4927
[9] Peng X H, Liu J, Huang F, et al. Effect of microstructure on hydrogen-induced cracking propagation and hydrogen trapping efficiency of pipeline steel [J]. Corros. Prot., 2013, 34: 882
[9] (彭先华, 刘静, 黄峰等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响 [J]. 腐蚀与防护, 2013, 34: 882)
[10] Huang F, Li X G, Liu J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel [J]. J. Mater. Sci., 2011, 46: 715
[11] Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
[12] Du C W, Zhao T L, Liu Z Y, et al. Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution [J]. Int. J. Miner. Metall. Mater., 2016, 23: 176
[13] Gan L J, Huang F, Liu J Y, et al. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J]. Int. J. Hydrog. Energy, 2018, 43: 2293
[14] NACE TM0284-2011. Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking [S]. 2011
[15] Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
[16] Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al. An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel [J]. Int. J. Hydrog. Energy, 2016, 41: 4185
[17] Huang F, Liu S, Liu J, et al. Sulfide stress cracking resistance of the welded WDL690D HSLA steel in H2S environment [J]. Mater. Sci. Eng,, 2014, A591: 159
[18] Wang S H, Luu W C, Ho K F, et al. Hydrogen permeation in a submerged arc weldment of TMCP steel [J]. Mater. Chem. Phys., 2002, 77: 447
[19] Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 92
[19] (褚武杨, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 92)
[20] Zhang T M, Zhao W M, Deng Q S, et al. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen [J]. Int. J. Hydrog. Energy, 2017, 42: 25102
[1] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[2] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[3] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[4] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[5] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[6] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[7] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[8] 胡骞,刘静,王玉昆,黄峰,戴明杰,侯阳来. 不同组织A710钢在NaCl溶液中耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 611-616.
[9] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[10] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[11] 苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
[12] 冯晓伟,戚文军,黎小辉,李志成. 生物医用挤压态Mg-Zn-Gd镁合金的组织与耐电化学腐蚀性能[J]. 中国腐蚀与防护学报, 2016, 36(3): 267-272.
[13] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[14] 暨波,张新明,张卓夫,叶凌英,李文健. Yb对2519A铝合金抗剥落腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 279-286.
[15] 赵阳, 梁平, 史艳华, 张云霞. 环境因素对X100钢表面钝化膜性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.