Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 511-518    DOI: 10.11902/1005.4537.2018.165
  研究报告 本期目录 | 过刊浏览 |
海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响
张天翼1,柳伟1(),范玥铭1,李世民1,董宝军1,BANTHUKUL Wongpat1,CHOWWANONTHAPUNYA Thee2
1. 北京科技大学新材料技术研究院 腐蚀与防护中心 北京 100083
2. Faculty of International Maritime Studies, Kasetsart University, Sriracha, Chonburi 20230, Thailand
Effect of Synergistic Action of Cu/Ni on Corrosion Resistance of Low Alloy Steel in a Simulated Tropical Marine Atmosphere
ZHANG Tianyi1,LIU Wei1(),FAN Yueming1,LI Shimin1,DONG Baojun1,BANTHUKUL Wongpat1,CHOWWANONTHAPUNYA Thee2
1. Corrosion and Protection Center, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2. Faculty of International Maritime Studies, Kasetsart University, Sriracha, Chonburi 20230, Thailand
全文: PDF(4315 KB)   HTML
摘要: 

通过模拟严苛热带海洋大气环境的室内喷淋加速实验,研究了Cu/Ni协同作用对低合金钢的腐蚀速率及锈层形貌、成分的影响,测试3种合金试样在0.5% (质量分数) NaCl溶液中的电化学阻抗及线性极化曲线。结果表明,随着Cu、Ni含量的提高,钢材在喷淋实验下生成的锈层逐渐变薄且致密,同时Cu在锈层的富集作用阻碍了Cl-入侵。Cu、Ni两种元素在一定程度上提高了基体金属溶解反应的电荷转移电阻 (Rt) 及极化电阻,加速了保护性锈层的形成并从阳极电化学反应抑制作用上提高了锈层的保护性。

关键词 耐蚀钢热带海洋大气腐蚀协同作用极化电阻    
Abstract

The effect of synergistic action of Cu and Ni on corrosion rate, morphology and composition of the rust formed on three low alloy steels with different contents of Cu and Ni was studied via indoor spray acceleration tests, aiming to simulate the harsh tropical marine atmosphere. Meanwhile, electrochemical impedance spectroscopy (EIS) and linear polarization tests for the three steels were also carried out in 0.5% (mass fraction) NaCl solution. The results show that with the increase of Cu- and Ni-content, the rust layer formed on the steels subjected to spraying test becomes gradually thinner and denser, and the enrichment of Cu in the rust layer mitigates the invasion of Cl-. The charge transfers resistance (Rt) and polarization resistance of the metal dissolution reaction were increased to some extent by the synergistic effect of two elements of Cu and Ni, which accelerated the formation and enhanced the protectiveness of the rust layer through inhibiting the anodic electrochemical reaction.

Key wordscorrosion resistant steel    tropical marine atmospheric environment    corrosion    synergistic action    polarization resistance
收稿日期: 2018-11-09     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2016YFE0203600);国家自然科学基金(51571027)
通讯作者: 柳伟     E-mail: weiliu@ustb.edu.cn
Corresponding author: Wei LIU     E-mail: weiliu@ustb.edu.cn
作者简介: 张天翼,男,1993年生,博士生

引用本文:

张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
Tianyi ZHANG, Wei LIU, Yueming FAN, Shimin LI, Baojun DONG, Wongpat BANTHUKUL, Thee CHOWWANONTHAPUNYA. Effect of Synergistic Action of Cu/Ni on Corrosion Resistance of Low Alloy Steel in a Simulated Tropical Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 511-518.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.165      或      https://www.jcscp.org/CN/Y2019/V39/I6/511

SteelCSiPMnSCuNiCrTiFe
0.7Cu-0.7Ni0.0450.300.0810.410.0050.740.740.300.02Bal.
0.4Cu-0.4Ni0.0450.300.0810.410.0050.400.350.320.02Bal.
0.3Cu-0.3Ni0.090.300.0810.410.0050.280.270.480.02Bal.
表1  实验用钢的化学成分 (mass fraction / %)
图1  3种钢的金相显微组织
图2  室内喷淋实验腐蚀速率
图3  3种钢喷淋实验240 h后的锈层和除去锈层后的宏观形貌
图4  喷淋实验240 h后3种钢锈层表面形貌
图5  3种钢腐蚀240 h后锈层截面形貌及元素分布结果
图6  裸钢电化学阻抗谱及等效电路图
SteelQ / F·cm-2nRt / Ω·cm2
0.7Cu-0.7Ni1.90×10-40.88470.4
0.4Cu-0.4Ni6.50×10-40.83823.6
0.3Cu-0.3Ni2.70×10-40.901031.0
表2  3种裸钢EIS拟合的电化学参数
图7  喷淋实验240 h后带锈试样电化学阻抗谱及等效电路图
SteelRs / Ω·cm2Qdl / Ω-1·cm-2·S-nn1Rr / Ω·cm2Q2 / Ω-1·cm-2·S-nn2Rt / Ω·cm2
0.7Cu-0.7Ni62.12.38×10-40.6225.261.38×10-30.66434.5
0.4Cu-0.4Ni58.64.43×10-40.6424.765.43×10-30.74367.2
0.3Cu-0.3Ni43.25.72×10-40.7220.842.72×10-40.78239.8
表3  喷淋实验240 h后带锈试样EIS拟合值
图8  裸钢及喷淋实验240 h后带锈钢的线性极化曲线
SteelWithout rustWith rust
Ecorr / mVRP / Ω·cm2Ecorr / mVRP / Ω·cm2
0.7Cu-0.7Ni-633.551123.55-520.63335.89
0.4Cu-0.4Ni-570.991348.57-556.34533.90
0.3Cu-0.3Ni-539.251212.59-480.65323.99
表4  线性极化曲线电化学参数值
[1] Wang B, Liu Z Y, Chen J Q, et al. Effect of chromium content of weather-resisting steel on weathering resistance [J]. Mater. Prot., 2014, 47(5): 61
[1] (王兵, 刘志勇, 陈吉清等. Cr含量对耐候钢耐候性的影响 [J]. 材料保护, 2014, 47(5): 61)
[2] Liu R, Chen X P, Wang X D, et al. Effect of nickel on corrosion resistance of weathering steels in a simulated marine atmosphere environment [J]. Corros. Sci. Prot. Technol., 2016, 28: 122
[2] (刘芮, 陈小平, 王向东等. Ni对耐候钢在模拟海洋大气环境下耐蚀性的影响 [J]. 腐蚀科学与防护技术, 2016, 28: 122)
[3] Ge Q C, Wang B, Li Y Z, et al. Effect of Sn on corrosion resistance of weathering steel under marine atmosphere with high temperature and humidity [J]. Heat Treat. Met., 2017, 42(2): 67
[3] (葛秋辰, 汪兵, 李远征等. Sn对耐候钢高湿热海洋大气环境下耐蚀性能的影响 [J]. 金属热处理, 2017, 42(2): 67)
[4] Liu R, Chen X P, Wang X D, et al. Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment [J]. Hot Work. Technol., 2014, 43(20): 19
[4] (刘芮, 陈小平, 王向东等. 合金元素对耐候钢在海洋大气环境下耐蚀性的影响 [J]. 热加工工艺, 2014, 43(20): 19)
[5] Luo S Z, Zheng Y G, Jing H M, et al. Effect of cavitation on electrochemical corrosion behavior of 20SiMn low alloy steel in 3%NaCl solution [J]. Corros. Sci. Prot. Technol., 2003, 15: 311
[5] (骆素珍, 郑玉贵, 敬和民. 空蚀对20SiMn在3%NaCl溶液中的电化学腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2003, 15: 311)
[6] Chen J, Li Q A, Zhang Q, et al. Effect of corrosion on wear resistance of several metals in seawater [J]. Trans. Mater. Heat Treat., 2014, 35(12): 166
[6] (陈君, 李全安, 张清等. 海水腐蚀对几种金属材料耐磨性能的影响 [J]. 材料热处理学报, 2014, 35(12): 166)
[7] Tao Y Q, Liu G, Li Y S, et al. Corrosion wear properties of 2024 Al-Alloy in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 587
[7] (陶永奇, 刘刚, 黎业生等. 海水环境下2024铝合金腐蚀磨损性能研究 [J]. 中国腐蚀与防护学报, 2016, 36: 587)
[8] Li X G. Corrosion Behaviors and Mechanisms of Marine Engineering Materials [M]. Beijing: Chemical Industry Press, 2017: 4
[8] (李晓刚. 海洋工程材料腐蚀行为与机理 [M]. 北京: 化学工业出版社, 2017: 4)
[9] Jin S, Liu C M, Lin X, et al. Effect of inorganic anions on the corrosion behavior of UNS S32750 duplex stainless steel in chloride solution [J]. Mater. Corros., 2015, 66: 1077
[10] Ningshen S, Mudali U K, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci., 2007, 49: 481
[11] Geringer J, Macdonald D D. Modeling fretting-corrosion wear of 316L SS against poly (methyl methacrylate) with the point defect model: Fundamental theory, assessment, and outlook [J]. Electrochim. Acta, 2012, 79: 17
[12] Nicic I, Macdonald D D. The passivity of type 316L stainless steel in borate buffer solution [J]. J. Nucl. Mater., 2008, 379: 54
[13] Diaz I, Cano H, De La Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
[14] Jaén J A, Iglesias J, Adames O. Indoor atmospheric corrosion of conventional weathering steels in the tropical atmosphere of Panama [J]. Hyperfine Interact., 2014, 224: 279
[15] Jaén J A, Mu?óz A, Justavino J, et al. Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere [J]. Hyperfine Interact., 2009, 192: 51
[16] Wang Z F, Liu J R, Wu L X, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67: 1
[17] Mizoguchi T, Ishii Y, Okada T, et al. Magnetic property based characterization of rust on weathering steels [J]. Corros. Sci., 2005, 47: 2477
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.