Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (4): 359-366    DOI: 10.11902/1005.4537.2018.160
  研究报告 本期目录 | 过刊浏览 |
双级时效对7050铝合金力学性能及氢脆敏感性的影响
任建平1,宋仁国2()
1. 台州科技职业学院 台州 318020
2. 常州大学 材料科学与工程学院 常州 213164
Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy
REN Jianping1,SONG Renguo2()
1. Taizhou Vocational College of Science and Technology, Taizhou 318020, China
2. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
全文: PDF(19179 KB)   HTML
摘要: 

以7050铝合金为研究对象,采用双级时效工艺,利用拉伸实验、硬度测试、断面形貌观测研究了7050铝合金的力学性能;采用阴极渗氢法、定氢仪、EDS、SEM等手段研究了双级双峰时效对7050铝合金抗应力腐蚀性能的影响。结果表明:双峰现象存在于7050铝合金双级时效过程中,而延伸率随着时效进行基本呈下降趋势,在峰值位置时有所波动,分别提高3%和5%;随着充氢时间的延长,氢含量呈上升趋势,从相同的充氢时间来看,处在第二时效峰值时氢含量最低,宏观上表现为强韧性好。第二峰强度和硬度的提高是由于增加了一定数量的η'相,塑韧性的增加主要是η'相粒子均匀弥散分布在基体中,导致变形均匀。

关键词 7050铝合金双级时效强韧化机理断裂韧性氢脆    
Abstract

The effect of two-stage ageing heat treatment on the mechanical performance and sensitivity to hydrogen embrittlement for 7075 Al-alloy was assessed by means of tensile tester, hardness tester and cross section morphology observation, as well as cathodic hydrogen permeability method, hydrogen meter, EDS and SEM. The results show that the double peak phenomenon emerged for the two-stage ageing heat-treated 7050 Al-alloy, and the elongation decreases basically with the ageing process, while the peak positions fluctuate to certain extend. The hydrogen content increases with the extension of hydrogen charging time. From the perspective of the same hydrogen charging time, the hydrogen content is the lowest at the peak of the second ageing, however the alloy presented strong toughness. Scanning electron microscopy (SEM) revealed that the improvement of the second peak strength and hardness is due to the increased amount of η', while the plastic toughness increase is mainly ascribed to that η' phase particles evenly dispersed in the matrix, leading to the uniformity in deformation.

Key words7050 aluminum alloy    two-stage ageing    toughening mechanism    fracture toughness    hydrogen embrittlement
收稿日期: 2018-11-03     
ZTFLH:  TG178  
基金资助:国家自然科学基金(50771093 and 51371039)
通讯作者: 宋仁国     E-mail: songrg@hotmail.com
Corresponding author: Renguo SONG     E-mail: songrg@hotmail.com
作者简介: 任建平,男,1983年生,硕士

引用本文:

任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
Jianping REN, Renguo SONG. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 359-366.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.160      或      https://www.jcscp.org/CN/Y2019/V39/I4/359

图1  7050铝合金紧凑拉伸试样的正面图和断面图
图2  7050铝合金充氢装置
图3  7050铝合金拉伸试样尺寸及实物图
图4  7050铝合金长时间时效状态下的硬度、强度、延伸率随时间变化曲线
图5  7050铝合金在743 K/70 min+393 K/8 h+423 K双级时效制度下时效不同时间的断口形貌
PointZnMgCuZrTiMnCrFeSiAl
A6.422.252.020.130.030.100.040.120.06Bal.
B6.422.202.050.120.020.100.050.480.39Bal.
表1  图5中A、B两处各元素含量的EDS分析结果
Hydrogen charging time / hB(17 h)C(33 h)D(45 h)
Hydrogen contentSeepage hydrogencontentHydrogen contentSeepage hydrogencontentHydrogen contentSeepage hydrogencontent
016.7240.00014.5710.00013.4790.000
324.3558.91622.3547.73420.5556.126
631.53915.72528.13014.61026.30812.759
945.56827.68438.47818.96835.22116.771
表2  7050铝合金的氢含量
Ageing stateTime / hσ0.2 / MPaσk / MPaδ / %δloss / %
A(8 h)054953913.60
351149812.114.2
647747212.917.6
943342311.518.6
B(17 h)058056713.30
355452112.811.3
651249812.513.6
948948111.916.4
C(33 h)055254113.00
652550411.616.1
D(45 h)058957112.70
356251512.17.9
651450811.814.1
950449011512.6
E(57 h)054853311.10
642041810.515.3
表3  7050铝合金慢应变拉伸力学性能
图6  7050铝合金充氢后断口形貌特征
图7  7050铝合金时效状态下的显微组织
图8  7050铝合金峰值时的析出相的高分辨显微组织
[1] SongR G, ZengM G, ZhangJ B, et al. Investigation of relation between grain boundary segregation and behavior of stress corrosion and corrosion fatigue in 7075 aluminium alloy [J]. J. Chin. Soc. Corros. Prot., 1996, 16: 1
[1] (宋仁国, 曾梅光, 张金宝等. 7050铝合金晶界偏析与应力腐蚀、腐蚀疲劳行为的研究 [J]. 中国腐蚀与防护学报, 1996, 16: 1)
[2] ZhangY, SongR G, TangP H. hydrogen embrittlement susceptibility and Mg-H interaction in 7075 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 364
[2] (张宇, 宋仁国, 唐普洪. 7075铝合金氢脆敏感性与Mg-H相互作用 [J]. 中国腐蚀与防护学报, 2010, 30: 364)
[3] RenJ P, SongR G, ChenX M, et al. Development and states of heat-treatment process for 7xxx series aluminum alloys [J]. Hot Work. Technol., 2009, 38(6): 120
[3] (任建平, 宋仁国, 陈小明等. 7xxx系铝合金热处理工艺的研究现状及进展 [J]. 热加工工艺, 2009, 38(6): 120)
[4] GecuR, AcarS, KisasozA, et al. Influence of T6 heat treatment on A356 and A380 aluminium alloys manufactured by thixoforging combined with low superheat casting [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 385
[5] ZhangW W, HuY, ZhangG Q, et al. Formation of nanoscale metallic glassy particle reinforced al-based composite powders by high-energy milling [J]. Metals, 2017, 7: 425
[6] QiX, JinJ R, DaiC L, et al. A study on the susceptibility to SCC of 7050 aluminum alloy by DCB specimens [J]. Materials, 2016, 9: 884
[7] YanD J. Analysis about strengthening mechanism from the ageing process of 7475 Al alloy [J]. J. Mater. Eng., 1992, (2): 15
[7] 阎大京. 从7475铝合金的时效看Al-Zn-Mg-Cu系合金的强化 [J]. 材料工程, 1992, (2): 15)
[8] ChenX M, SongR G. Study on double-peak ageing process for 7xxx series aluminum alloy [J]. Hot Work. Technol., 2009, 38(2): 93
[8] (陈小明, 宋仁国. 7xxx系铝合金“双峰”时效工艺的普适性研究 [J]. 热加工工艺, 2009, 38(2): 93)
[9] RenJ P, SongR G, ChenX M, et al. Optimization of heat treatment of 7003 aluminum alloy based on BP neural networks gradient descent algorithms [J]. Aerosp. Mater. Technol., 2009, 39(4): 6
[9] (任建平, 宋仁国, 陈小明等. 基于BP神经网络梯度下降算法的7003铝合金热处理工艺优化 [J]. 宇航材料工艺, 2009, 39(4): 6)
[10] NingA L, ZengS M. Effect of aging system on microstructure and mechanical properties of 7B04 aluminum alloy [J]. Chin. J. Nonferrous Met., 2004, 14: 922
[11] LukasakD A, HartR M. Aluminum alloy development efforts for compression dominated structure of aircraft [J]. Light Met. Age, 1991, 49(9): 11
[12] LiH, WangZ X, ZhengZ Q. High temperature pre-precipitation treatment of 7050 aluminum alloy [J]. Rare Met. Mater. Eng., 2008, 37: 674
[12] (李海, 王芝秀, 郑子樵. 7050铝合金高温预析出处理 [J]. 稀有金属材料与工程, 2008, 37: 674)
[13] PickensJ R. Aluminium powder metallurgy technology for high-strength applications [J]. J. Mater. Sci., 1981, 16: 1437
[14] LiC M, ChenZ Q, ChengN P, et al. Study of heat treatment scheme of ultrahigh-strength, ultrahigh-ductility aluminum alloy [J]. Light Alloy Fabric. Technol., 2007, 35(12): 36
[14] (李春梅, 陈志谦, 程南璞等. 超高强超高韧铝合金的热处理工艺研究 [J]. 轻合金加工技术, 2007, 35(12): 36)
[15] HuH, WangX Y. Effect of heat treatment on the in-plane anisotropy of as-rolled 7050 aluminum alloy [J]. Metals, 2016, 6: 79
[16] ScamansG M, HolroydN J H, TuckC D S. The role of magnesium segregation in the intergranular stress corrosion cracking of aluminium alloys [J]. Corros. Sci., 1987, 27: 329
[17] SongR G, DietaelW, ZhangB J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52: 4727
[18] SongR G, ZhangB J, ZengM G, et al. Investigation of hydrogen induced ductile brittle transition in 7175 aluminum alloy [J]. Acta Metall. Sin., 1996, 9: 287
[19] SongR G, GengP, ZenM G, et al. Aging characteristics, stress corrosion behaviour and role of Mg segregation at grain boundary in 7175 high-strength Al alloy [J]. J. Mater. Sci. Technol., 1998, 14: 259
[20] TakanoN. Hydrogen diffusion and embrittlement in 7075 aluminum alloy [J]. Mater. Sci. Eng., 2008, A483/484: 336
[1] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[6] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[7] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[8] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[9] 白子恒,黄运华,李晓刚,杨浪,董超芳,颜利丹,肖葵. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[10] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[11] 张体明, 赵卫民, 郭望, 王勇. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[12] 郝文魁, 刘智勇, 张新, 杜翠薇, 李晓刚, 刘翔. H2S浓度对35CrMo钢应力腐蚀开裂的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[13] 李成杰,杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[14] 林召强,马力,闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[15] 张宇,宋仁国,唐普洪. 7075铝合金氢脆敏感性与Mg-H相互作用[J]. 中国腐蚀与防护学报, 2010, 30(5): 364-368.