Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 160-166    DOI: 10.11902/1005.4537.2018.157
  研究报告 本期目录 | 过刊浏览 |
海上型风力发电系统涂装体系研究
李全德1,2,3(),龚显龙1,3,倪荣1,3,戴君1,3,隆彬1,3,巩秀芳1,3,孟惠民2
1. 长寿命高温材料国家重点实验室 德阳 618000
2. 北京科技大学 新材料技术研究院 北京 100083
3. 东方汽轮机有限公司 德阳 618000
Assessement of Coating Systems for Offshore Wind Power Generation System
Quande LI1,2,3(),Xianlong GONG1,3,Rong NI1,3,Jun DAI1,3,Bin LONG1,3,Xiufang GONG1,3,Huimin MENG2
1. State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
2. Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
3. Dongfang Turbine Co., Ltd., Deyang 618000, China
全文: PDF(7346 KB)   HTML
摘要: 

通过附着力、中性盐雾、耐磨性、紫外老化、循环腐蚀和户外暴露实验等研究了6种不同涂料体系的防护性能,分析了它们在海上型风力发电系统涂装的可行性。结果表明:S03和S04两种环氧富锌聚氨酯涂层体系在循环腐蚀以及户外挂片实验后仍具有5 MPa以上的附着力;P04和P06两种富锌底漆锈蚀和起泡等级均为1级 (S2),且锈蚀蔓延宽度不超过2.70 mm,具有较好的耐盐雾腐蚀和抗腐蚀扩展性能;T01~T04和T06共5种聚氨酯面漆的耐磨性均大于1.0 L/μm,具有优良的耐磨性;紫外加速老化过程中,T01~T04这4种聚氨酯面漆失光率均未超过1级,具有较好的耐紫外老化和耐腐蚀性能。不同厂家同类型油漆在防护性能上仍存在较大差距,S04涂层体系具有较好的综合防护性能,推荐用于海上风力发电系统的涂装防腐。

关键词 海上风力发电涂装体系    
Abstract

The feasibility of several coating systems for offshore wind power generation system was assessed through adhesion measurement, neutral salt spray, wear resistance test, ultraviolet aging test, cyclic corrosion test and outdoor exposure test. Experimental results indicated that after cyclic corrosion and outdoor exposure test, two types of epoxy zinc-rich polyurethane coating systems S03 and S04 maintained adhesive strength of above 5 MPa. After neutral salt spray test for 2000 h, the rust- and blister-degree for the two zinc-rich primers P04 and P06 could be raked as grade 1 (S2), while the expand of the rust size is no more than 2.70 mm underneath the primer. Hence, the two primers have good resistance to salt spray and corrosion propagation. Five types of polyurethane coatings, including T01~T04 and T06, have excellent wear resistance of superior to 1.0 L/μm. The gloss reduction of four types of polyurethane coatings (T01~T04) did not exceed grade 1 during the course of uv-accelerated aging. However, there exists large variations in the protective performance for the same type of paint supplied by different manufacturers. It is concluded that the S04 coating system has better comprehensive protective performance, thus, which is suitable to the application in the sector of offshore wind power generation system.

Key wordsoffshore    wind power generation    coating system
收稿日期: 2018-11-01     
ZTFLH:  TG174.61  
通讯作者: 李全德     E-mail: dtcliquande@126.com
Corresponding author: Quande LI     E-mail: dtcliquande@126.com
作者简介: 李全德,男,1985年生,博士生

引用本文:

李全德,龚显龙,倪荣,戴君,隆彬,巩秀芳,孟惠民. 海上型风力发电系统涂装体系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 160-166.
Quande LI, Xianlong GONG, Rong NI, Jun DAI, Bin LONG, Xiufang GONG, Huimin MENG. Assessement of Coating Systems for Offshore Wind Power Generation System. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 160-166.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.157      或      https://www.jcscp.org/CN/Y2019/V39/I2/160

图1  涂层附着力测试结果
图2  6种底漆涂层试样经2000 h中性盐雾实验后的宏观形貌
GradeP01P02P03P04P05P06
Rust5 (S5)4 (S4)2 (S4)1 (S2)2 (S3)1 (S2)
Blister5 (S5)3 (S4)2 (S4)1 (S2)2 (S4)1 (S2)
表1  涂层起泡和生锈等级
图3  6种面漆的耐磨性
图4  6种面漆1000 h紫外老化实验后的宏观形貌
图5  6种面漆1000 h紫外老化实验后的失光率
图6  6种涂层体系试样4200 h循环腐蚀实验结果
图7  6种涂层体系户外暴露5 a后的附着力和失光率
No.Qingdao outdoor exposure stationZhoushan outdoor exposure station
Adhesion / MPaAdhesion reduction / %Adhesion / MPaAdhesion reduction / %
1 a2 a5 a1 a2 a5 a1 a2 a5 a1 a2 a5 a
S015.805.304.085.5413.6833.555.964.923.982.9319.8735.18
S025.875.293.7813.5022.0944.336.124.843.439.8728.7249.48
S037.056.895.2315.4017.2937.216.116.425.1526.7022.9338.18
S047.266.505.876.5616.3424.457.166.825.507.8512.2329.21
S055.705.494.331.214.8524.965.034.363.6112.8024.4437.44
S066.505.995.204.1311.6523.306.596.025.022.8011.2125.96
表2  6种涂层体系试样户外暴露5 a后的附着力及其下降率
[1] Yu J H. Analysis of application environment factors for offshore wind power converter [J]. Environ. Technol., 2016, 34(3): 51
[1] 余建宏. 海上风电变流器应用环境因素分析 [J]. 环境技术, 2016, 34(3): 51)
[2] Chen C, Huang H J, Wang J, et al. Durability evaluation of coatings for steel structure of wind power generator in splash zone of hot-humid sea [J]. Paint Coat. Ind., 2015, 45(6): 56
[2] 陈川, 黄海军, 王俊等. 湿热海上风电钢结构飞溅区涂料耐久性评价技术研究 [J]. 涂料工业, 2015, 45(6): 56)
[3] Lv P Y, Wang P Q. Study on engineering practice and repairing product of protective system for steel structure coating of offshore wind power [J]. Mod. Paint Finish., 2018, 21(2): 27
[3] 吕鹏远, 汪培庆. 海上风电钢结构涂层防护体系的工程实践和修复产品的研究 [J]. 现代涂料与涂装, 2018, 21(2): 27)
[4] Zhan Y, Zhong B W. The corrosion causes and anticorrosion coating of wind farm in Chinese south area [J]. Shanghai Coat., 2015, 53(5): 34
[4] 詹耀, 钟本旺. 我国南方地区风电场的腐蚀成因及防腐涂装 [J]. 上海涂料, 2015, 53(5): 34)
[5] Hu J Z, Liu Q B, Hu H H, et al. Cl- sedimentation rate in atmosphere of tropical island [J]. Corros. Prot., 2018, 39: 463
[5] 胡杰珍, 刘泉兵, 胡欢欢等. 热带海岛大气中氯离子沉降速率 [J]. 腐蚀与防护, 2018, 39: 463
[6] Li Y, Lin D Y, Chen Y X, et al. Corrosion behavior of 2A12-T4 Al-alloy in salt-spray environment [J]. Corros. Sci. Prot. Technol., 2016, 28: 455
[6] 李一, 林德源, 陈云翔等. 2A12-T4铝合金在盐雾环境下的腐蚀行为与腐蚀机理研究 [J]. 腐蚀科学与防护技术, 2016, 28: 455
[7] Liu H X, Cheng X Q, Li X G, et al. Prediction model for corrosion of aluminum 1060 in marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 349
[7] 刘海霞, 程学群, 李晓刚等. A1060纯Al的海洋大气环境腐蚀寿命预测模型研究 [J]. 中国腐蚀与防护学报, 2016, 36: 349
[8] Zhang D D, Wang Z Y, Zhao C Y, et al. Atmospheric corrosion behavior of Q345 steel in a simulated acidic marine aerosols environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 326
[8] 张丹丹, 王振尧, 赵春英等. Q345钢在模拟酸性海洋气溶胶环境下的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 326
[9] Mao C L, Xiao K, Dong C F, et al. Corrosion behavior of extra deep drawing cold rolled sheet in stimulative ocean-atmosphere environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 101
[9] 毛成亮, 肖葵, 董超芳等. 超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 101
[10] Liu Y J, Wang Z Y, Ke W. Characterization of corrosion products on pure al exposed in atmospheres at typical rural, industrial and coastal areas in China [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 47
[10] 刘艳洁, 王振尧, 柯伟. 纯Al在3种典型沿海、工业和乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 47
[11] Zhong X Z, Wang Z Y, Liu Y J, et al. Corrosion behavior of galvanized steel in simulated ocean atmosphere [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 151
[11] 钟西舟, 王振尧, 刘艳洁等. 镀锌钢在模拟海洋大气环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 151
[12] Wu P P, Chen F. Study on the application of heavy anticorrosion coatings for marine engineering equipment [J]. Mech. Electr. Eng. Technol., 2018, 47(4): 183
[12] 吴平平, 陈峰. 海洋工程装备重防腐涂料的应用研究 [J]. 机电工程技术, 2018, 47(4): 183)
[13] Wen Y L, Liu C Q, Lu Z M, et al. Research status and development direction of marine anticorrosive coatings [J]. Shandong Chem. Ind., 2018, 47(12): 40
[13] 文玉良, 刘重强, 卢志敏等. 海洋防腐涂料的研究现状及发展方向 [J]. 山东化工, 2018, 47(12): 40)
[14] Yang Y H, Li L J, Guo F C, et al. Development and property of an anticorrosive epoxy coating for marine environment [J]. Corros. Prot., 2018, 39: 232
[14] 杨耀辉, 李玲杰, 郭富超等. 一种海洋环境环氧防腐蚀涂料的研发及其性能 [J]. 腐蚀与防护, 2018, 39: 232
[15] Wang H R, Zhang H X. Study on the corrosion resistance of organic coatings in simulated marine environment [J]. China Coat., 2018, 33(9): 25
[15] 王海荣, 张海信. 有机涂层在模拟海洋环境中的防腐性能研究 [J]. 中国涂料, 2018, 33(9): 25)
[16] Liu Y B, Zhang B, Wang Z T, et al. Study on the rapid evaluation of electrochemical impedance spectroscopy of offshore wind turbine [J]. Environ. Technol., 2017, (6): 6
[16] 刘扬波, 张斌, 王钊桐等. 海上风电塔筒涂层电化学阻抗谱快速评价技术研究 [J]. 环境技术, 2017, (6): 6)
[17] Luo S S, Li X Q, Zhong H P, et al. Study on anti-corrosion of receptor offshore wind power blade [J]. Shandong Chem. Ind., 2017, 46(16): 16
[17] 罗莎莎, 李鑫泉, 钟虎平等. 海上风电叶片接闪器防腐蚀研究 [J]. 山东化工, 2017, 46(16): 16)
[18] Li M M, Xu Q J, Han J. Progress of corrosion and protection for offshore wind power [J]. Corros. Prot., 2014, 35: 584
[18] 李美明, 徐群杰, 韩杰. 海上风电的防腐蚀研究与应用现状 [J]. 腐蚀与防护, 2014, 35: 584
[19] Chen X Y, Chen D M, Chen X, et al. Corrosion-characteristics and mechanism of weathering steel Q345 in tropical marine atmosphere [J]. Corros. Sci. Prot. Technol., 2018, 30: 150
[19] 陈新彦, 陈大明, 陈旭等. 热带海洋大气环境中耐候钢腐蚀特征与机理的研究 [J]. 腐蚀科学与防护技术, 2018, 30: 150
[20] Zhan Y. The anticorrosive technology for the offshore wind power facilities and its application [J]. Shanghai Coat., 2012, 50(8): 22
[20] 詹耀. 海上风电设施的防腐技术及应用 [J]. 上海涂料, 2012, 50(8): 22)
[21] Zhang X D, Wang J, Jie G X, et al. Consideration on design and evaluation of protective coating system for offshore wind tower in southeast coast of China [J]. Equip. Environ. Eng., 2013, 10(5): 7
[21] 张晓东, 王俊, 揭敢新等. 我国东南沿海海上风电塔架防护涂装体系设计与评价思考 [J]. 装备环境工程, 2013, 10(5): 7)
[22] Li Q D, Ni R, Meng H M, et al. Phenolic epoxy coating application in nuclear power turbine oil system research [J]. Dongfang Turb., 2017, (2): 31
[22] 李全德, 倪荣, 孟惠民等. 酚醛环氧涂料在核电汽轮机油系统中的应用研究 [J]. 东方汽轮机, 2017, (2): 31)
[23] Xu T T, Chen Z Q, Tian W P, et al. Protective performance of a novel silicone coating ES150 modified with Nano-particulate of metal for AZ91D Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 373
[23] 徐涛涛, 陈祝桥, 田卫平等. ES150 型纳米改性有机硅涂料的防护作用及其应用 [J]. 中国腐蚀与防护学报, 2018, 38: 373
[24] Liu M, Zhao S Y, Liu F C, et al. Preparation and properties of antistatic and anitcorrosion coatings [J]. Corros. Sci. Prot. Technol., 2018, 30: 459
[24] 刘敏, 赵书彦, 刘福春等. 抗静电耐腐蚀涂层的制备及性能研究 [J]. 腐蚀科学与防护技术, 2018, 30: 459
No related articles found!