Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 571-580    DOI: 10.11902/1005.4537.2018.152
  研究报告 本期目录 | 过刊浏览 |
环氧防腐涂料在模拟海水干湿交替条件下的失效过程
王贵容1,2,郑宏鹏1,蔡华洋1,邵亚薇1(),王艳秋1,孟国哲1,刘斌1
1. 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2. 航空工业成都飞机工业 (集团) 有限责任公司 成都 610092
Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air
WANG Guirong1,2,ZHENG Hongpeng1,CAI Huayang1,SHAO Yawei1(),WANG Yanqiu1,MENG Guozhe1,LIU Bin1
1. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2. Aviation Industry Chengdu Aircraft Industry (Group) Co. , Ltd. , Chengdu 610092, China
全文: PDF(8305 KB)   HTML
摘要: 

用电化学阻抗谱 (EIS)、附着力测试、Fourier红外光谱 (FT-IR) 和扫描电镜 (SEM) 等分析手段研究了环氧防腐涂层在干湿交替及全浸泡环境下的失效过程。结果表明,干湿交替环境中环氧防腐涂层前期的防护效果较好,涂层后期失效快于全浸泡环境下的失效速率;环氧防腐涂层在干湿交替环境下失效的原因是由于涂层交替的吸水和失水过程使得涂层孔隙率增大,对涂层造成机械损坏,使得涂层内部及表面开裂,最终导致附着力降低,涂层大面积起泡失效。

关键词 环氧防腐涂层干湿交替涂层孔隙鼓泡失效    
Abstract

The failure process of the epoxy coating subjected to test of alternating immersion in artificial seawater and dry in air was studied by means of electrochemical impedance technique (EIS), Fourier transform infrared spectrometry (FT-IR), scanning electronic microscope (SEM), adhesion test and water absorption measurement. The results showed that, in the earlier test period, the epoxy coating subjected to wed-dry cycle test presents higher protectiveness than that subjected to merely immersion test. At the last test period, the former coating failed faster than the later one. The failure mechanism of the epoxy coating during wet-dry cycle testing may be proposed as that the coating matrix underwent alternate absorption and loss of water during the test, correspondingly, the relevant swelling and shrinking may generate more porosity within the coating, as a result, mechanical damages, such as cracks may develop from the interior to the surface of the coating, leads to lower adhesion and blisters of the coating eventually.

Key wordsepoxy coating    dry-wet cycle    porosity of the coating    blisters failure
收稿日期: 2018-10-23     
ZTFLH:  TG174.461  
基金资助:国家重点研发计划(2016YFB0300604)
通讯作者: 邵亚薇     E-mail: shaoyawei@hrbeu.edu.cn
Corresponding author: Yawei SHAO     E-mail: shaoyawei@hrbeu.edu.cn
作者简介: 王贵容,女,1992年生,硕士生

引用本文:

王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
Guirong WANG, Hongpeng ZHENG, Huayang CAI, Yawei SHAO, Yanqiu WANG, Guozhe MENG, Bin LIU. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 571-580.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.152      或      https://www.jcscp.org/CN/Y2019/V39/I6/571

图1  干湿交替实验装置
图2  涂层在不同浸泡时期下的阻抗图
图3  涂层在不同干湿交替循环时期下的阻抗图
图4  涂层在全浸泡及干湿交替循环后的低频阻抗模值|Z|0.01 Hz变化谱
图5  全浸泡2050 h及干湿交替210个循环后试样的宏观表面形貌
图6  全浸泡和干湿交替暴露条件下涂层的附着力随时间的变化
图7  经不同时间全浸实验后涂层样品进行结合力测试的拉拔实验后的表面形貌照片
图8  干湿交替条件下不同阶段涂层/金属体系拉拔实验后表面形貌照片
图9  干湿交替及全浸泡条件下涂层失效后的FT-IR谱
图10  不同时期的等效电路图
图11  全浸泡及干湿交替条件下涂层电阻随时间的变化曲线
图12  干湿交替及全浸环境下涂层孔隙率的变化曲线
图13  浸泡2050 h及干湿交替210个循环后试样的微观形貌
图14  未浸泡、全浸泡及干湿交替后涂层截面的微观形貌
图15  不同干湿交替循环次数下涂层吸水率的变化曲线
图16  环氧防腐涂层干湿交替失效机理模型
[1] Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
[1] (侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326)
[2] Fang Z G, Huang Y. Degradation behavior of organic coatings in a simulated deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 518
[2] (方志刚, 黄一. 有机涂层在深海环境中的失效行为研究 [J]. 腐蚀科学与防护技术, 2010, 22: 518)
[3] Park J H, Lee G D, Ooshige H, et al. Monitoring of water uptake in organic coatings under cyclic wet-dry condition [J]. Corros. Sci,, 2003, 45: 1881
[4] Coniglio N, Nguyen K, Kurji R, et al. Characterizing water sorption in 100% solids epoxy coatings [J]. Prog. Org. Coat., 2013, 76: 1168
[5] Zhao X, Wang J, Wang Y H, et al. Analysis of deterioration process of organic protective coating using EIS assisted by SOM network [J]. Electrochem. Commun., 2007, 9: 1394
[6] Lendvay-Gy?rik G, Pajkossy T, Lengyel B. Corrosion-protection properties of water-borne paint coatings as studied by electrochemical impedance spectroscopy and gravimetry [J]. Prog. Org. Coat., 2006, 56: 304
[7] Allahar K N, Hinderliter B R, Bierwagen G P, et al. Cyclic wet drying of an epoxy coating using an ionic liquid [J]. Prog. Org. Coat., 2008, 62: 87
[8] Zhang W. Study on the failure process of organic coatings in dry-wet alternate environment [D]. Qingdao: Ocean University of China, 2010
[8] (张伟. 干湿交替环境中有机涂层失效过程的研究 [D]. 青岛: 中国海洋大学, 2010)
[9] Dornbusch M, Kirsch S, Henzel C, et al. Characterization of the water uptake and electrolyte uptake of organic coatings and the consequences by means of electrochemical impedance spectroscopy and UV-vis spectroscopy [J]. Prog. Org. Coat., 2015, 89: 332
[10] Liu X W, Xiong J P, Lv Y W, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS [J]. Prog. Org. Coat., 2009, 64: 497
[11] Stafford O A, Hinderliter B R, Croll S G. Electrochemical impedance spectroscopy response of water uptake in organic coatings by finite element methods [J]. Electrochim. Acta, 2007, 52: 1339
[12] Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19: 99
[12] (张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19: 99)
[13] Wu L R, Hu X W, Xu C W. Methods for evaluating the performance of protective coatings with EIS [J]. Corros. Sci. Prot. Technol., 2000, 12: 181
[13] (吴丽蓉, 胡学文, 许崇武. 用EIS快速评估有机涂层防护性能的方法 [J]. 腐蚀科学与防护技术, 2000, 12: 181)
[14] Yang Y X. Wet adhesion test of heavy corrosion resistant coatings [J]. Shanghai Coat., 1991, (1): 38
[14] (杨幼心. 重防腐蚀涂料湿态附着力测试 [J]. 上海涂料, 1991, (1): 38)
[15] Ding X Y, Liu X Q, Tan S X. Discussion and suggestions on film adhesion test [J]. Paint Coat. Ind., 2014, 44(2): 60
[15] (丁新艳, 刘新群, 谭帅霞. 涂膜附着力测试的探讨与建议 [J]. 涂料工业, 2014, 44(2): 60)
[16] Larena A, Matías M C, Urreaga M J. Thermal degradation of polysiloxane coatings on E-glass fiber. A FTIR study [J]. Spectrosc. Lett., 1992, 25: 1121
[17] Xie J X. Infrared Spectroscopy [M]. Beijing: Science Press, 1987
[17] (谢晶曦. 红外光谱 [M]. 北京: 科学出版社, 1987)
[18] Chang B Y, Park S M. Electrochemical impedance spectroscopy [J]. Ann. Rev. Anal. Chem., 2010, 3: 207
[19] Zhang L, Tang Y M, Zuo Y, et al. Failure process of fluorocarbon coating under wet-dry cycle condition [J]. CIESC J., 2011, 62: 1977
[19] (张亮, 唐聿明, 左禹. 氟碳涂层在干湿交替环境下失效过程研究 [J]. 化工学报, 2011, 62: 1977)
[20] Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J]. Corros. Sci., 2014, 78: 130
[21] Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
[22] Yadav A P, Nishikata A, Tsuru T. Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness [J]. Corros. Sci., 2004, 46: 169
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[3] 赵洪涛,陆卫中,李京,郑玉贵. 无溶剂环氧防腐涂层在模拟海水冲刷条件下的电化学行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 295-305.
[4] 原徐杰, 张俊喜, 张世明, 谈天. 镀锌层破损输电杆塔用镀锌钢在干湿交替作用下的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 395-399.
[5] 张弦,杨淼,汪新,林安,甘复兴. 低碳钢在H2S溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2010, 30(6): 465-468.
[6] 王雷, 董俊华, 柯伟. 加载与循环干湿条件作用下对MnCu耐候钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 257-261.
[7] 张际标; 王佳; 王燕华; 姜应律 . 微液滴现象与大气腐蚀—— Ⅲ. 干湿交替下微液滴的扩展行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 151-154 .