Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (1): 9-17    DOI: 10.11902/1005.4537.2018.147
  综合评述 本期目录 | 过刊浏览 |
管线钢的微生物腐蚀
史显波1,杨春光1,严伟1,徐大可2,闫茂成1,单以银1,杨柯1()
1. 中国科学院金属研究所 沈阳 110016
2. 东北大学材料科学与工程学院 沈阳 110819
Microbiologically Influenced Corrosion of Pipeline Steels
Xianbo SHI1,Chunguang YANG1,Wei YAN1,Dake XU2,Maocheng YAN1,Yiyin SHAN1,Ke YANG1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(16984 KB)   HTML
摘要: 

介绍了管线钢的微生物腐蚀及其危害,分析了近年来管线钢微生物腐蚀的失效案例,总结了管线钢微生物腐蚀的研究现状及管线的微生物腐蚀防治措施。从材料自身角度阐述了耐微生物腐蚀管线钢的研究进展,在此基础上提出了耐微生物腐蚀管线钢的发展方向。

关键词 管线钢微生物腐蚀含Cu管线钢    
Abstract

Microbiologically influenced corrosion (MIC) of pipeline steels has been recognized as an important form of pipeline failures. It has been reported that more than 20% of pipeline system failures was related to microorganisms. It is therefore important to improve our understanding of MIC and take countermeasures for controlling the MIC. In this paper, the MIC of pipeline steels and the related hazards are reviewed, the MIC failure cases of pipeline steels in recent years are analyzed, and the state-of-the-art of research on the MIC of pipeline steels, as well as the relevant countermeasures are summarized. From the material aspect, the research progress of MIC-resistant pipeline steels is elaborated, and the research and development direction of MIC-resistant pipeline steels is proposed.

Key wordspipeline steel    microbiologically influenced corrosion    Cu-bearing pipeline steel
收稿日期: 2018-10-12     
ZTFLH:  TG142.1  
基金资助:辽宁省博士科研启动基金(20180540083);沈阳市科技计划项目(18-013-0-53);中国管线研究组织项目(CPRO2018NO4)
通讯作者: 杨柯     E-mail: kyang@imr.ac.cn
Corresponding author: Ke YANG     E-mail: kyang@imr.ac.cn
作者简介: 史显波,男,1988年生,博士

引用本文:

史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
Xianbo SHI, Chunguang YANG, Wei YAN, Dake XU, Maocheng YAN, Yiyin SHAN, Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 9-17.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.147      或      https://www.jcscp.org/CN/Y2019/V39/I1/9

图1  管线钢剥离涂层下发生的微生物腐蚀形貌[16]
图2  沼泽地下输气管道发生硫酸盐还原菌腐蚀的形貌[17]
SteelYSMPaUTSMPaEL%CVNJ
X80-Cu pipeline steel (as-rolled)55274124.9125
X80 pipeline steel65772923.5116
X80-Cu pipeline steel (as-aged)69274522.1120
表1  含Cu管线钢 (X80-Cu) 和X80管线钢的力学性能[59]
图3  含Cu管线钢 (X80-Cu) 和X80管线钢的拉伸应力-应变曲线和冲击断裂形貌[59]
图4  含Cu管线钢 (X80-Cu) 和X80管线钢在含有SRB的土壤浸出液中的腐蚀电流密度曲线[57]
图5  含Cu管线钢 (X80-Cu) 和X80管线钢在含有SRB的土壤浸出液中浸泡20 d后的表面生物膜形貌[57]
图6  含Cu管线钢 (X80-Cu) 和X80管线钢在含有SRB的土壤浸出液中浸泡20 d后的表面腐蚀坑形貌[57]
图7  含Cu管线钢 (X80-Cu) 和X80管线钢在含有铜绿假单胞菌的溶液中浸泡5 d后的表面细菌活/死形貌[59]
图8  含Cu管线钢 (X80-Cu) 和X80管线钢在含有铜绿假单胞菌溶液中浸泡14 d后的表面腐蚀坑形貌[59]
[1] Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
[1] 黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
[2] Javaherdashti R. Microbiologically Influenced Corrosion: An Engineering Insight [M]. London: Springer, 2008
[3] Institute of Oceanology, Chinese Academy of Sciences. China corrosion costs in 2014 were more than 2 trillion [EB/OL]. (2016-06-05).
[3] 中国科学院海洋研究所. 我国2014年腐蚀成本超过2万亿约占GDP 3.34% [EB/OL]. (2016-06-05). )
[4] Javaherdashti R. A review of some characteristics of MIC caused by sulfate-reducing bacteria: Past, present and future [J]. Anti-Corros. Method Mater., 1999, 46: 173
[5] Jiang B, Du C W, Li X G, et al. Development of typical microbiologically influenced corrosion research [J]. Corros. Prot. Petrochem.Ind., 2008, 25(4): 1
[5] 蒋波, 杜翠薇, 李晓刚等. 典型微生物腐蚀的研究进展 [J]. 石油化工腐蚀与防护, 2008, 25(4): 1
[6] Yin Y S, Dong L H, Liu T, et al. Microbiologically Influenced Corrosion of Materials Used in Ocean [M]. Beijing: Chemical Science Press, 2012
[6] 尹衍升, 董丽华, 刘涛等. 海洋材料的微生物附着腐蚀 [M]. 北京: 科学出版社, 2012
[7] Lin J, Zhu G W, Sun C, et al. A review of Microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 279
[7] 林建, 朱国文, 孙成等. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13: 279
[8] Xia J, Xu D K, Nan L, et al. Study on mechanisms of microbiologically influenced corrision of metal from the perspective of bio-electrochemistry and bio-energetics [J]. Chin.
[8] J. Mater. Res., 2016, 30(3): 161夏进, 徐大可, 南黎等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理 [J]. 材料研究学报, 2016, 30(3): 161)
[9] Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
[9] 刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
[10] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeter. Biodegr., 2014, 93: 84
[11] Gu T Y. New understandings of biocorrosion mechanisms and their classifications [J]. J. Microb. Biochem. Technol., 2012, 4: 3
[12] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeter. Biodegr., 2014, 91: 74
[13] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
[14] Huo C Y, Li Y, Ji L K. Development and applications of pipeline steel in long-distance gas pipeline of China [A]. Energy Materials2014 [C]. Cham: Springer, 2014
[15] Videla H A. Prevention and control of biocorrosion [J]. Int. Biodeter. Biodegr., 2002, 49: 259
[16] Li S Y, Kim Y G, Jeon K S, et al. Microbiologically influenced corrosion of underground pipelines under the disbonded coatings [J]. Met. Mater., 2000, 6: 281
[17] Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem [J]. Appl. Environ. Microbiol., 2014, 80: 1226
[18] Abedi S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline [J]. Eng. Fail. Anal., 2007, 14: 250
[19] Jacobson G A. Corrosion at Prudhoe Bay-A lesson on the line [J]. Mater. Perform., 2007, 8: 27
[20] Bhat S, Kumar B, Prasad S, et al. Failure of a new 8-in pipeline from group gathering station to central tank farm [J]. Mater. Perform., 2011, 50: 50
[21] Al-Jaroudi S, UI-Hamid A, Al-Gahtani M. Failure of crude oil pipeline due to microbiologically induced corrosion [J]. Corros. Eng. Sci. Technol., 2011, 46: 568
[22] Liu L. Corrosion behavior of sulfate reducing bacteria in X52 pipeline steel [D]. Chengdu: Southwest Petroleum University, 2016
[22] 刘黎. X52输油管道硫酸盐还原菌腐蚀行为研究 [D]. 成都: 西南石油大学, 2016
[23] Niu T, Yang J W, Wang L, et al. Pitting mechanism of X60 pipeline steel under the action of SRB [J]. Corros. Prot., 2014, 35: 1060
[23] 牛涛, 杨建炜, 王林等. 硫酸盐还原菌作用下X60管线钢的腐蚀穿孔机制 [J]. 腐蚀与防护, 2014, 35: 1060
[24] Xiao R J, Xiao G Q, Huang B, et al. Corrosion failure cause analysis and evaluation of corrosion inhibitors of Ma Huining oil pipeline [J]. Eng. Fail. Anal., 2016, 68: 113
[25] Jack T, Wilmott M, Sutherby R, et al. External corrosion of line pipe: A summary of research activities [J]. Mater. Perform., 1996, 35: 18
[26] Pikas J. Case histories of external microbiologically influenced corrosion underneath disbonded coatings [A]. Corrosion/96 [C].Houston, TX: NACE International, 1996
[27] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corros. Sci., 2011, 53: 955
[28] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
[29] Alabbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J]. Int. Biodeter. Biodegr., 2013, 78: 34
[30] Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
[31] Wu T Q, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment [J]. Corros. Sci., 2014, 88: 291
[32] Sun C, Xu J, Wang F H. Interaction of sulfate-reducing bacteria and carbon steel Q235 in biofilm [J]. Ind. Eng. Chem. Res., 2011, 50: 12797
[33] Wu T Q, Yan M C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in a near-neutral pH soil solution [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 93
[34] Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) electrochemical analysis [J].J.Chin. Soc. Corros. Prot., 2014, 34: 346
[34] 吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346
[35] Kuang F, Wang J, Yan L, et al. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel [J]. Electrochim. Acta, 2007, 52: 6084
[36] Little B J, Lee J S, Ray R I. The influence of marine biofilms on corrosion: A concise review [J]. Electrochim. Acta, 2008, 54: 2
[37] Qing Y C, Yang Z W, Xian J, et al. Corrosion behavior of Q235 steel under the interaction of alternating current and microorganisms [J]. Acta Metall. Sin., 2016, 52: 1142
[37] 卿永长, 杨志炜, 鲜俊等. 交流电和微生物共同作用下Q235钢的腐蚀行为 [J]. 金属学报, 2016, 52: 1142
[38] Cetin D, Aksu M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. [J]. Corros. Sci., 2009, 51: 1584
[39] Javed M, Neil W, Stoddart P, et al. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion [J]. Biofouling, 2016, 32: 109
[40] Sreekumari K R, Nandakumar K, Kikuchi Y. Bacterial attachment to stainless steel welds: Significance of substratum microstructure [J]. Biofouling, 2001, 17: 303
[41] Javed M A, Stoddart P R, McArthur S L, et al. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel [J]. Biofouling, 2013, 29: 939
[42] Kanematsu H, Barry D M. Biofilm and Materials Science [M]. Switzerland: Springer, 2015
[43] Li K W, Whitfield M, Van Vliet K. Beating the bugs: Roles of microbial biofilms in corrosion [J]. Corros. Rev., 2013, 31: 73
[44] Eckert R B. Emphasis on biofilms can improve mitigation of microbiologically influenced corrosion in oil and gas industry [J]. Corros. Eng. Sci. Technol., 2015, 50: 163
[45] Stoodley P, Sauer K, Davies D G, et al. Biofilms as complex differentiated communities [J]. Ann. Rev. Microbiol., 2002, 56: 187
[46] Wang M F, Liu H F, Xu L M. Applied research on the competitive growth of bacteria in biological control of MIC [J].J. Chin. Soc. Corros. Prot., 2004, 24(3): 159
[46] (汪梅芳, 刘宏芳, 许立铭. 细菌竞争生长在微生物腐蚀防治中的应用研究 [J]. 中国腐蚀与防护学报, 2004, 24(3): 159)
[47] Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J]. Environ. Microbiol., 2012, 14: 1772
[48] Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
[49] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
[50] Kato S. Microbial extracellular electron transfer and its relevance to iron corrosion [J]. Microb. Biotechnol., 2016, 9: 141
[51] Popoola L T, Grema A S, Latinwo G K, et al. Corrosion problems during oil and gas production and its mitigation [J]. Int.
[51] J. Ind. Chem., 2013, 4: 35
[52] Xu D, Jia R, Li Y, et al. Advances in the treatment of problematic industrial biofilms [J]. World J. Microbiol. Biotechnol., 2017, 33: 97
[53] Yan M C, Wang J Q, Han E-H, et al. Characteristics and evolution of thin layer electrolyte on pipeline steel under cathodic protection shielding disbonded coating [J]. Acta Metall. Sin., 2014, 50: 1137
[53] 闫茂成, 王俭秋, 韩恩厚等. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化 [J]. 金属学报, 2014, 50: 1137
[54] Yan M C, Yang S, Xu J, et al. Stress corrosion cracking of X80 pipeline steel at coating defect in acidic soil [J]. Acta Metall. Sin., 2016, 52: 1133
[54] 闫茂成, 杨霜, 许进等. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为 [J]. 金属学报, 2016, 52: 1133
[55] Shi X B, Yan W, Wang W, et al. Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking [J]. Mater. Des., 2016, 92: 300
[56] Shi X B, Yan W, Wang W, et al. Hydrogen-induced cracking resistance of novel Cu-bearing pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1343
[56] 史显波, 严伟, 王威等. 新型含Cu管线钢的抗氢致开裂性能 [J]. 金属学报, 2018, 54: 1343
[57] Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
[57] 史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
[58] Shi X B, Yan W, Wang W C, et al. Effect of Cu addition in pipeline steels on microstructure, mechanical properties and microbiologically influenced corrosion [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 601
[59] Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[6] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[7] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[8] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[9] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[10] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[11] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[12] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[13] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[14] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[15] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.