Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (4): 281-290    DOI: 10.11902/1005.4537.2018.145
  综合评述 本期目录 | 过刊浏览 |
不锈钢中诱发局部腐蚀的贫Cr区研究进展
史伟宁,杨树峰(),李京社
北京科技大学冶金与生态工程学院 北京 100083
Correlation Between Cr-depleted Zone and Local Corrosion in Stainless Steels: A Review
SHI Weining,YANG Shufeng(),LI Jingshe
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(8120 KB)   HTML
摘要: 

综述了不锈钢中两种典型的局部腐蚀形态以及贫Cr区对局部腐蚀产生的影响;从3个方面介绍了不锈钢中贫Cr区引起的局部腐蚀行为,包括不锈钢中贫Cr区发生的位置,研究贫Cr区的方法以及目前存在的问题。综合分析可见,不锈钢中存在的夹杂物、沉淀相或者二次相尺寸小,Cr含量高,沿晶界分布的特点将会造成贫Cr区的产生。通过冶炼过程中调整不锈钢成分,后续轧制和热处理或者外场处理过程中调整工艺参数,尽可能地消除第二相周围的贫Cr区,能够大大提高不锈钢的耐局部腐蚀性能,扩大不锈钢的应用范围。

关键词 局部腐蚀贫Cr区夹杂物晶界    
Abstract

The severe local corrosion behavior was triggered by the Cr-depleted zone presented in stainless steel, entailing the enormous economic losses and casualties. Resultantly, how to understand the phenomena of Cr-depleted zone systematically was arising topic. This paper presents a review of two kinds of local corrosion emerged commonly in stainless steel and the effect of Cr-depleted zone on the local corrosion from three aspects, including the location where Cr-depleted zone comes up, the method of studying Cr-depleted zone and the existing problems currently. The results show that the characteristics of smaller size, higher Cr content or distributing along the grain boundary possessed by inclusions, precipitates or secondary phases may be favorable to the occurrence of Cr-depleted zone. If the Cr-depleted zone around the secondary phases be eliminated by adjusting the compositions of stainless steel in smelting process and process parameters in subsequently rolling and heat treatment or field processing, the local corrosion resistance of stainless steel should be greatly enhanced.

Key wordslocal corrosion    Cr-depleted zone    inclusion    grain boundary
收稿日期: 2018-10-09     
ZTFLH:  TG171  
基金资助:国家自然科学基金(51474085、51674023)
通讯作者: 杨树峰     E-mail: yangshufeng@ustb.edu.cn
Corresponding author: Shufeng YANG     E-mail: yangshufeng@ustb.edu.cn
作者简介: 史伟宁,男,1992年生,博士生

引用本文:

史伟宁,杨树峰,李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
Weining SHI, Shufeng YANG, Jingshe LI. Correlation Between Cr-depleted Zone and Local Corrosion in Stainless Steels: A Review. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 281-290.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.145      或      https://www.jcscp.org/CN/Y2019/V39/I4/281

图1  Ryan等提出的MnS夹杂物的点蚀机制[16]
图2  DIN 1.4305不锈钢中不同的点蚀形貌[21]
图3  相同尺寸、类型、成分、形貌的富Cr/MnS夹杂物点蚀状态[25]
图4  包含纳米颗粒MnCr2O4的MnS夹杂物腐蚀形貌及纳米颗粒MnCr2O4附近线扫描分析[29]
图5  稀土处理前后夹杂物与基体边界Cr含量的变化[32]
图6  双相不锈钢在850 ℃时效处理10 min之后夹杂物周围产生的二次相沉淀[33]
图7  (Cr, Fe)2N颗粒的形貌和线扫分析结果[53]
图8  TEM观察晶内Cr2N沉淀周围的贫Cr区[50]
图9  晶界处Cr的碳化物的贫Cr现象[61]
ObjectMethodInformation
CompositionFIB/SIMS[16,17,18,19,25,28]The composition at micro area adjacent to inclusions accurately
Crystal structure, composition, morphologyTEM[17,18,19,26,27,28,29,38,53,57,60,61,62]The composition accurately and quantitatively in nano area
CompositionAES[21,63]The composition accurately in microscale area
Morphology, compositionSEM[21,25,28,32,33,38,53,58,60,61,62,64]In situ observation of corrosion morphology
Current distribution, CompositionSECM[63]Surface information and local Ferrari current map of materials
CompositionEPMA[32,33,57]The trace amount
Depth of pitsAFM[53,63]The depth of pits
The corrosion behavior of single inclusionMicroscale potentiodynamic polarization[25,53]Pitting potential, corrosion current density
The corrosion behavior of specimen or inclusionMacroscale potentiodynamic polarization[25,32]Pitting potential, corrosion current density
The metastable pitting of inclusionsPotentiostatic polarization[32]The number of metastable pitting
The morphology of grain/grain boundaries or inclusionImmersion tests[21]Corrosion morphology of grain/grain boundaries or inclusions
The degree of sensitization (DOS)DLEPR[33,61,64]Ir/Ia<2%, no; 2~8%, little; 8~30%, weak and medium; >30%, severe
The corrosion resistance of specimenOCP[61]Variation of open-circuit voltage with time
表1  不锈钢中贫Cr区的检测方法
TypeMass fraction of Cr / %Dimension / μmMorphologyCr-depleted zoneReference
Artificial inclusion36~40---SphericalYes[15]
MnS---1~2SphericalYes[16]
MnS---1~2SphericalNo[17,18,19]
MnS3~81~3SphericalNo[21]
MnS30~401~3SphericalYes*[25]
MnS---<1ElongatedNo[26-29]
Cr-Mn-O---------Yes[31]
(Ce, Cr, Fe)O12~202~3SphericalNo*[32]
(Cr, Mn, Al)O40~50<1SphericalYes[32]
X phase20~30---IrregularYes[33]
Cr2N78~90<1RodlikeYes[38-52]
(Cr, Fe)2N55~70<1Needlelike/ SphericalNo[53]
M23C6---------Yes[61]
表2  夹杂物、沉淀相和二次相的特征
[1] WilliamsD E, NewmanR C, SongQ, et al. Passivity breakdown and pitting corrosion of binary alloys [J]. Nature, 1991, 350: 216
[2] FrankelG S. Pitting corrosion of metals: A review of the critical factors [J]. J. Electrochem. Soc., 1998, 145: 2186
[3] PuncktC, B?lscherM, RotermundH H, et al. Sudden onset of pitting corrosion on stainless steel as a critical phenomenon [J]. Science, 2004, 305: 1133
[4] LyonS. A natural solution to corrosion? [J]. Nature, 2004, 427: 406
[5] MutoI, IzumiyamaY, HaraN. Microelectrochemical measurements of dissolution of MnS inclusions and morphological observation of metastable and stable pitting on stainless steel [J]. J. Electrochem. Soc., 2007, 154: C439
[6] WebbE G, SuterT, AlkireR C. Microelectrochemical measurements of the dissolution of single MnS inclusions, and the prediction of the critical conditions for pit initiation on stainless steel [J]. J. Electrochem. Soc., 2001, 148: B186
[7] WebbE G, AlkireR C. Pit initiation at single sul?de inclusions in stainless steel-I. Electrochemical microcell measurements [J]. J. Electrochem. Soc., 2002, 149: B272
[8] MutoI, ItoD, HaraN. Microelectrochemical investigation on pit initiation at sul?de and oxide inclusions in type 304 stainless steel [J]. J. Electrochem. Soc., 2009, 156: C55
[9] MutoI, KurokawaS, HaraN. Microelectrochemical investigation of anodic polarization behavior of CrS inclusions in stainless steels [J]. J. Electrochem. Soc., 2009, 156: C395
[10] ShinozakiJ, MutoI, OmuraT, et al. Local dissolution of MnS inclusion and microstructural distribution of absorbed hydrogen in carbon steel [J]. J. Electrochem. Soc., 2011, 158: C302
[11] ChibaA, ShibukawaS, MutoI, et al. Microelectrochemical aspects of interstitial carbon in type 304 stainless steel: Improving pitting resistance at MnS inclusion [J]. J. Electrochem. Soc., 2015, 162: C270
[12] ChibaA, MutoI, SugawaraY, et al. A microelectrochemical system for in situ high-resolution optical microscopy: Morphological characteristics of pitting at MnS inclusion in stainless steel [J]. J. Electrochem. Soc., 2012, 159: C341
[13] ChibaA, MutoI, SugawaraY, et al. Direct observation of pit initiation process on type 304 stainless steel [J]. Mater. Trans., 2014, 55: 857
[14] ChibaA, MutoI, SugawaraY, et al. Pit initiation mechanism at MnS inclusions in stainless steel: Synergistic effect of elemental sulfur and chloride ions [J]. J. Electrochem. Soc., 2013, 160: C511
[15] WilliamsD E, ZhuY Y. Explanation for initiation of pitting corrosion of stainless steels at sulfide inclusions [J]. J. Electrochem. Soc., 2000, 147: 1763
[16] RyanM P, WilliamsD E, ChaterR J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
[17] MengQ, FrnakelG S, ColijinH O, et al. High-resolution characterization of the region around manganese sulfide inclusions in stainless steel alloys [J]. Corrosion, 2004, 60: 346
[18] MengQ, FrnakelG S, ColijinH O, et al. Metallurgy (communication arising): Stainless-steel corrosion and MnS inclusions [J]. Nature, 2003, 424: 389
[19] RyanM P, WilliamsD E, ChaterR J, et al. Metallurgy (communication arising): Stainless-steel corrosion and MnS inclusions [J]. Nature, 2003, 424: 390
[20] CaprioD, Vautrin-UlC, StafiejJ, et al. Cellular automata approach for morphological evolution of localised corrosion [J]. Corros. Eng. Sci. Technol., 2011, 46: 223
[21] SchmukiP, HildebrandH, FriedrichA, et al. The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion [J]. Corros. Sci., 2005, 47: 1239
[22] BlomK J, DegerbeckJ. Low manganese austenitic stainless steel has improved resistance to pitting and crevice corrosion [J]. Mater. Perform., 1983, 22: 52
[23] DegerbeckJ. Influence of Mn compared to that of Cr, Mo and S on the resistance to initiation of pitting and crevice corrosion in austenitic stainless steels [J]. Mater. Corros., 1978, 29: 179
[24] DegerbeckJ, WoldE. Some aspects of the influence of manganese in austenitic stainless steels [J]. Mater. Corros., 1974, 25: 172
[25] KrawiecH, VignalV, HeintzO, et al. Dissolution of chromium-enriched inclusions and pitting corrosion of resulfurized stainless steels [J]. Metall. Mater. Trans., 2006, 37A: 1541
[26] WangY J, ZhouY T, ZhangB, et al. Transmission electron microscopy and first principles calculation studies of MnS/γ interface in austenitic stainless steels [J]. J. Chin. Electr. Microsc. Soc., 2012, 31: 411
[26] (王宇佳, 周杨韬, 张波等. 奥氏体不锈钢中MnS/γ界面的透射电子显微学与第一性原理计算研究 [J]. 电子显微学报, 2012, 31: 411)
[27] LiuC, ZhengS J, ZhangB, et al. Transmission electron microscopic study of MnS inclusions in 316F stainless steel [J]. J. Chin. Electr. Microsc. Soc., 2008, 27: 300
[27] (刘超, 郑士建, 张波等. 316F不锈钢中MnS夹杂的电子显微学分析 [J]. 电子显微学报, 2008, 27: 300)
[28] ZhengS J, WangY J, ZhangB, et al. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels [J]. Acta Mater., 2010, 58: 5070
[29] ZhouY T, ZhengS J, ZhangB, et al. Atomic scale understanding of the interaction between alloying copper and MnS inclusions in stainless steels in NaCl electrolyte [J]. Corros. Sci., 2016, 111: 414
[30] HaH Y, ParkC J, KwonH S. Effects of non-metallic inclusions on the initiation of pitting corrosion in 11%Cr ferritic stainless steel examined by micro-droplet cell [J]. Corros. Sci., 2007, 49: 1266
[31] FujikawaH, MurayamaJ, FujinoN, et al. Mechanism of high temperature oxidation of austenitic stainless steels with high silicon [J]. Tetsu-to-Hagane, 1981, 67: 169
[32] JeonS H, SongG D, HurD H, et al. Passivation behavior of Ce-containing hyper duplex stainless steels in sulfuric acid solution [J]. Mater. Trans., 2015, 56: 1287
[33] JeonS H, KimH J, ParkY S. Effects of inclusions on the precipitation of chi phases and intergranular corrosion resistance of hyper duplex stainless steel [J]. Corros. Sci., 2014, 87: 1
[34] LopezN, CidM, PuiggaliM. Influence of o-phase on mechanical properties and corrosion resistance of duplex stainless steels [J]. Corros. Sci., 1999, 41: 1615
[35] NilssonJ O, KangasP, WilsonA, et al. Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel [J]. Metall. Mater. Trans., 2000, 31A: 35
[36] YuanZ Z, DaiQ X, ChengX N, et al. Microstructural thermostability of high nitrogen austenitic stainless steel [J]. Mater. Charact., 2007, 58: 87
[37] DengB, WangZ Y, JiangY M, et al. Effect of thermal cycles on the corrosion and mechanical properties of UNS S31803 duplex stainless steel [J]. Corros. Sci., 2009, 51: 2969
[38] RamirezA J, LippoldJ C, BrandiS D. The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels [J]. Metall. Mater. Trans., 2003, 34A: 1575
[39] MaX P, WangL J, LiuC M, et al. Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel [J]. Mater. Sci. Eng., 2012, A539: 271
[40] TanH, WangZ Y, JiangY M, et al. Influence of welding thermal cycles on microstructure and pitting corrosion resistance of 2304 duplex stainless steels [J]. Corros. Sci., 2012, 55: 368
[41] ZhangZ Y, WangZ Y, JiangY M, et al. Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds [J]. Corros. Sci., 2012, 62: 42
[42] YangY Z, WangZ Y, TanH, et al. Effect of a brief post-weld heat treatment on the microstructure evolution and pitting corrosion of laser beam welded UNS S31803 duplex stainless steel [J]. Corros. Sci., 2012, 65: 472
[43] De AssisK S, De SousaF V V, MirandaM, et al. Assessment of electrochemical methods used on corrosion of superduplex stainless steel [J]. Corros. Sci., 2012, 59: 71
[44] JiangY M, TanH, WangZ Y, et al. Influence of Creq/Nieq on pitting corrosion resistance and mechanical properties of UNS S32304 duplex stainless steel welded joints [J]. Corros. Sci., 2013, 70: 252
[45] HaH Y, KwonH S. Effects of Cr2N on the pitting corrosion of high nitrogen stainless steels [J]. Electrochim. Acta, 2007, 52: 2175
[46] KangD H, LeeH W. Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds [J]. Corros. Sci., 2013, 74: 396
[47] ChehuanT, DreilichV, De AssisK S, et al. Influence of multipass pulsed gas metal arc welding on corrosion behaviour of a duplex stainless steel [J]. Corros. Sci., 2014, 86: 268
[48] ZhangZ Y, ZhaoH, ZhangH Z, et al. Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection [J]. Corros. Sci., 2015, 93: 120
[49] ZanottoF, GrassiV, MerlinM, et al. Effect of brief heat treatments performed between 650 and 850 ℃ on corrosion behaviour of a lean duplex stainless steel [J]. Corros. Sci., 2015, 94: 38
[50] JeonS H, HurD H, KimH J, et al. Effect of Ce addition on the precipitation of deleterious phases and the associated intergranular corrosion resistance of 27Cr-7Ni hyper duplex stainless steels [J]. Corros. Sci., 2015, 90: 313
[51] GholamiM, HoseinpoorM, MoayedM H. A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel [J]. Corros. Sci., 2015, 94: 156
[52] KimH J, JeonS H, KimS T, et al. Influence of the shielding gas composition on the passive film and erosion corrosion of tube-to-tube sheet welds of hyper duplex stainless steel [J]. Corros. Sci., 2015, 91: 140
[53] Erazmus-VignalP, VignalV, SaedlouS, et al. Corrosion behaviour of sites containing (Cr, Fe)2N particles in thermally aged duplex stainless steel studied using capillary techniques, atomic force microscopy and potentiostatic pulse testing method [J]. Corros. Sci., 2015, 99: 194
[54] YinY F, FaulknerR G, MoretonP, et al. Grain boundary chromium depletion in austenitic alloys [J]. J. Mater. Sci., 2010, 45: 5872
[55] WasG S, TischnerH H, LatanisionR M. The influence of thermal treatment on the chemistry and structure of grain boundaries in inconel 600 [J]. Metall. Mater. Trans., 1981, 12A: 1397
[56] DuprezL, De CoomanB C, AkdutN. Redistribution of the substitutional elements during σ and χ phase formation in a duplex stainless steel [J]. Steel Res., 2001, 72: 311
[57] ByunS H, KangN, LeeT H, et al. Kinetics of Cr/Mo-rich precipitates formation for 25Cr-6.9Ni-3.8Mo-0.3N super duplex stainless steel [J]. Met. Mater. Int., 2012, 18: 201
[58] HsiehC C, WuW T. Phase transformation of δσ in multipass heat-affected and fusion zones of dissimilar stainless steels [J]. Met. Mater. Int., 2011, 17: 375
[59] SimmonsJ W. Influence of nitride (Cr2N) precipitation on the plastic flow behavior of high-nitrogen austenitic stainless steel [J]. Scr. Metall. Mater., 1995, 32: 265
[60] NilssonJ O, WilsonA. Influence of isothermal phase transformations on toughness and pitting corrosion of super duplex stainless steel SAF 2507 [J]. Mater. Sci. Technol., 1993, 9: 545
[61] QianJ, ChenC F, YuH B, et al. The influence and the mechanism of the precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310 S stainless steel [J]. Corros. Sci., 2016, 111: 352
[62] NakamichiH, SatoK, MiyataY, et al. Quantitative analysis of Cr-depleted zone morphology in low carbon martensitic stainless steel using FE- (S) TEM [J]. Corros. Sci., 2008, 50: 309
[63] WangY Q, LiN, LinS H. Study on pitting corrosion of stainless steel [J]. Corros. Sci. Prot. Technol., 2015, 27: 387
[63] (王永强, 李娜, 林苏华. 不锈钢点蚀研究概述 [J]. 腐蚀科学与防护技术, 2015, 27: 387)
[64] AhnM K, KwonH S, LeeJ H. Predicting susceptibility of alloy 600 to intergranular stress corrosion cracking using a modified electrochemical potentiokinetic reactivation test [J]. Corrosion, 1995, 51: 441
[65] ZhangC, ChanK C, WuY, et al. Pitting initiation in Fe-based amorphous coatings [J]. Acta Mater., 2012, 60: 4152
[66] JiaD B, DaiW B, TangG P, et al. Improvement of pitting corrosion resistance of stainless steel by electric current pulse [J]. Mater. Sci. Technol., 2017, 33: 1417
[67] LiuY, WangL, LiW T, et al. Effects of electric field treatment on corrosion behavior of GH3044 superalloy [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 129
[67] (刘杨, 王磊, 李伟涛等. 电场处理对GH3044合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 129)
[68] CurielF F, GarcíaR, LópezV H, et al. Effect of magnetic field applied during gas metal arc welding on the resistance to localised corrosion of the heat affected zone in AISI 304 stainless steel [J]. Corros. Sci., 2011, 53: 2393
[1] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[2] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[3] 冯超, 彭碧草, 谢亿, 王军, 李明欢, 吴堂清, 尹付成. 0.1%NaHSO3盐雾条件下T91钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[4] 张彭辉, 逄昆, 丁康康, 孔祥峰, 彭欣. 扫描振动电极技术在腐蚀领域的应用进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
[5] 唐晓,时春涛,曹光,李焰. 海岸土壤环境对油气管道局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 191-196.
[6] 赵书振,许立宁,窦娟娟,常炜,路民旭. 醋酸对X70管线钢CO2湿气顶部腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[7] 赵凤, 鲁法云, 穆楠, 郭富安, 张莉. 7050铝合金板材晶粒结构与抗剥落腐蚀性能的关系[J]. 中国腐蚀与防护学报, 2015, 35(5): 423-428.
[8] 程从前, 曹铁山, 王冬颖, 姚景文, 王健, 关锰, 赵杰. Cr13不锈钢在盐酸溶液喷射冲刷作用下的表面腐蚀形貌表征[J]. 中国腐蚀与防护学报, 2014, 34(5): 439-444.
[9] 王斌, 周翠, 李良君, 胡红梅, 朱加祥. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
[10] 刘士强, 王立达, 宗秋凤, 张成, 刘贵昌. 纯Al表面局部孔蚀的电化学噪声特征分析[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.
[11] 刘玉,李焰. 天然气管线钢CO2腐蚀研究进展[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[12] 冯万里,张乐福,马明娟. 轧制变形对690合金特殊晶界比例及耐晶间腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[13] 黄昌龙,徐海蓉. 不同时效态对7150铝合金剥蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 487-490.
[14] 张宇,宋仁国,唐普洪. 7075铝合金氢脆敏感性与Mg-H相互作用[J]. 中国腐蚀与防护学报, 2010, 30(5): 364-368.
[15] 镇凡;刘静;黄峰;程吉浩;李翠玲;郭斌;徐进桥. 夹杂物对X120管线钢氢致开裂的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 145-149.