Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (4): 338-344    DOI: 10.11902/1005.4537.2018.144
  研究报告 本期目录 | 过刊浏览 |
304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用
王标,杜楠(),张浩,王帅星,赵晴
南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel
WANG Biao,DU Nan(),ZHANG Hao,WANG Shuaixing,ZHAO Qing
National Defense Key Discipline Laboratory of Alloy Processing Scienceand Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(4680 KB)   HTML
摘要: 

用强制改变304不锈钢表面点蚀产物浓度的方法研究了点蚀产物浓度在亚稳态蚀孔的萌生过程及稳态蚀孔生长过程中的加速作用。结果表明,随着304不锈钢试样表面点蚀产物浓度的降低,点蚀孕育期增加,恒电位极化的平均峰值电流和平均峰值宽度显著减少,蚀孔数量显著减少,稳态蚀孔的体积、蚀孔横向生长速度下降。随着蚀孔宽深比的下降和蚀孔的生长,蚀孔内点蚀产物浓度再次增加,腐蚀速率增大。点蚀产物浓度是亚稳态蚀孔萌生和稳态蚀孔生长的关键因素。

关键词 亚稳态点蚀稳态点蚀搅拌恒电位极化    
Abstract

The acceleration effect of the concentration of pitting corrosion products on the metastable pitting initiation and the stable pitting growth of 304 stainless steel was studied by changing the concentration of pitting products on the surface of 304 stainless steel compulsively. There are three characteristic indexes of metastable pitting initiation process with the decreasing concentration of pitting products, namely the increase of pitting incubation period, the reduce of average peak current and average peak width, and the decrease of pits number. The volume and the transverse growth rate of pits decreases. With the decreasing ratio of pits width to depth and the growth of pits, the concentration of pitting products in pits increases again and the corrosion rate increases. The concentration of pitting products is certainly the key factor for metastable pitting initiation and steady pitting growth.

Key wordsmetastable pitting    stable pitting    stir    potentiostatic polarization
收稿日期: 2018-10-08     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51561024)
通讯作者: 杜楠     E-mail: d_nan@sina.com
Corresponding author: Nan DU     E-mail: d_nan@sina.com
作者简介: 王标,男,1992年生,硕士生

引用本文:

王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
Biao WANG, Nan DU, Hao ZHANG, Shuaixing WANG, Qing ZHAO. Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 338-344.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.144      或      https://www.jcscp.org/CN/Y2019/V39/I4/338

图1  实验装置图
图2  304不锈钢在3.5%NaCl溶液中不同搅拌速度下亚稳蚀孔暂态电流与时间的关系
图3  亚稳态蚀孔平均峰值电流、平均峰值宽度、蚀孔数目和点蚀孕育期与转速的关系
图4  3.5%NaCl溶液中不同搅拌速度下单个蚀孔点蚀电流与时间的关系
图5  在3.5%NaCl溶液中不同搅拌速度下单个蚀孔体积与时间的关系
Stirring rate r / minD / μmd / μmH / μmV / μm3DHdH
01751031051.61×1061.670.98
10013385908.36×1051.470.94
30012579877.45×1051.430.90
5008962753.54×1051.180.82
表1  不同搅拌速度下极化后单个蚀孔的几何参数
图6  在3.5%NaCl溶液中不同搅拌速度下单个蚀孔口径随时间的变化
图7  不同搅拌速度条件下单个稳态蚀孔表面形貌及其三维重构图
[1] YeC, DuN, ZhaoQ, et al. Progress in research of pitting corrosion behavior and research methods of stainless steels [J]. Corros. Prot., 2014, 35: 271
[1] (叶超, 杜楠, 赵晴等. 不锈钢点蚀行为及研究方法的进展 [J]. 腐蚀与防护, 2014, 35: 271)
[2] LiuD X. Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 78
[2] 刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 78)
[3] LiuZ Y, LiX G, DuC W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci., 2008, 50: 2251
[4] BursteinG T, LiuC, SoutoR M, et al. Origins of pitting corrosion [J]. Corros. Eng., Sci. Technol., 2004, 39: 25
[5] LiX G, ZhangD W, LiuZ Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
[6] FengZ C, ChengX Q, DongC F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
[7] LiuZ Y, LiX G, DuC W, et al. Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment [J]. Corros. Sci., 2009, 51: 895
[8] FrankelG S, StockertL, HunkelerF, et al. Metastable pitting of stainless steel [J]. Corrosion, 1987, 43: 429
[9] WangM F, LiX G, DuN, et al. Direct evidence of initial pitting corrosion [J]. Electrochem. Commun., 2008, 10: 1000
[10] AshleyG W, BursteinG T. Initial stages of the anodic oxidation of iron in chloride solutions [J]. Corros. Sci., 2012, 47: 908
[11] VetterK J, StrehblowH H,In StaehleR W. et alEds. Localized Corrosion [M]. Houston: NACE, 1974: 240
[12] WilliamsD E, WestcottC, FleischmannM. Stochastic Models of pitting corrosion of stainless-Steels 1: Modeling of the initiation and growth of pits at constant potential [J]. J. Electrochem. Soc., 1985, 132: 1796
[13] LiuX J, SpikesH, WongJ S S. In situ pH responsive fluorescent probing of localized iron corrosion [J]. Corros. Sci., 2014, 87: 118
[14] ZuoY, WangH T, XiongJ P. The aspect ratio of surface grooves and metastable Pitting of stainless steel [J]. Corros. Sci., 2002, 44: 25
[15] BursteinG T, PistoriusP C, MattinS P. The nucleation and growth of corrosion pits on stainless steel [J]. Corros. Sci., 1993, 35: 57
[16] HuangS X, DuN, ZhaoQ, et al. Fe3+ hydrolysis and its impact on the pitting behavior of 304 stainless steel [J]. Corros. Prot., 2016, 37: 453
[16] (黄世新, 杜楠, 赵晴等. Fe3+水解及其对304不锈钢点蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 453)
[17] ZhangS Q. The study of pitting behavior for 304 stainless steel in 3.5%NaCl solution [D]. Nanchang: Nanchang Hangkong University, 2018
[17] (张思齐. 304不锈钢在3.5%NaCl溶液中的点蚀行为研究 [D]. 南昌: 南昌航空大学, 2018)
[18] ZuoY, WangH T. Electrochemical study on metastable pitting of metals and alloys [J]. Corros. Sci. Prot. Technol., 1999, 11: 44
[18] (左禹, 王海涛. 金属亚稳态孔蚀行为的电化学研究 [J]. 腐蚀科学与防护技术, 1999, 11: 44)
[19] TianW M. The study of pitting dynamics for 304 stainless steel in 3.5%NaCl solution [D]. Nanchang: Nanchang Hangkong University, 2013
[19] (田文明. 304不锈钢在3.5%NaCl溶液中的点蚀动力学研究 [D]. 南昌: 南昌航空大学, 2013)
[20] XiaoJ. The electrochemical characters of metastable pitting of 316L stainless steel [D]. Beijing: Beijing University of Chemical Technology, 2001
[20] (肖娟. 316L不锈钢亚稳态孔蚀行为的电化学特征 [D]. 北京: 北京化工大学, 2001)
[21] RyanM P, WilliamD E, ChaterR J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
[22] AiY J, DuN, ZhaoQ, et al. Effect of temperature on initiation of metastable pits and geometric features of stable pits for 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 135
[22] (艾莹珺, 杜楠, 赵晴等. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 135)
[23] FangY R, FuC Y. Corrosion and corrosion inhibition of 304 stainless steel in acidic FeCl3 solution with applied inhibitor K2Cr2O7 and ultrasonic vibration [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 305
[23] (方玉荣, 付朝阳. 酸性FeCl3溶液中304不锈钢的超声腐蚀和缓蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 305)
[24] ErnstP, LaycockN J, MoayedM H, et al. The mechanism of lacy cover formation in pitting [J]. Corros. Sci., 1997, 39: 1133
[25] YinZ F, ZhaoW Z, TianW, et al. Pitting behavior on super 13Cr stainless steel in 3.5%NaCl solution in the presence of acetic acid [J]. J. Solid State Electrochem., 2009, 13: 1291
[26] AiY J, DuN, ZhaoQ, et al. Effect of gravity on pitting behavior of 304 stainless steel [J]. Corros. Prot., 2014, 35: 1182
[26] (艾莹珺, 杜楠, 赵晴等. 重力对304不锈钢点蚀行为的影响 [J]. 腐蚀与防护, 2014, 35: 1182)
[1] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[2] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[3] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[4] 张华 孙大同 张 贺 赵衍华 马芳芳 许可人. 铝合金搅拌摩擦焊接接头腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2013, 33(3): 175-181.
[5] 康举,董春林,栾国红,何淼,付瑞东. 2024铝合金搅拌摩擦焊焊缝表面腐蚀机理探索[J]. 中国腐蚀与防护学报, 2011, 31(4): 282-288.
[6] 付瑞东,何淼,栾国红,董春林,康举. 酸性盐雾下2024铝合金搅拌摩擦焊接头的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(5): 396-402.
[7] 栾国红,付瑞东,董春林,何淼,康举. 中性盐雾下7075铝合金搅拌摩擦焊焊缝的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(3): 236-240.