Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (4): 319-330    DOI: 10.11902/1005.4537.2018.127
  研究报告 本期目录 | 过刊浏览 |
桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究
郭铁明1(),张延文1,秦俊山2,宋志涛1,董建军2,杨新龙2,南雪丽1
1. 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
2. 甘肃酒泉集团宏兴钢铁股份有限公司 嘉峪关 735100
Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres
GUO Tieming1(),ZHANG Yanwen1,QIN Junshan2,SONG Zhitao1,DONG Jianjun2
1. YANG Xinlong2, NAN Xueli1
2. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(22819 KB)   HTML
摘要: 

选择3种模拟西北地区大气环境的腐蚀介质 (除冰盐介质、工业大气介质及除冰盐+工业大气介质),采用干湿交替加速腐蚀实验研究了桥梁钢Q345q的腐蚀行为,通过失重法探讨了桥梁钢Q345q在3种不同腐蚀环境下的腐蚀动力学曲线,并采用XRD、SEM和电化学工作站等分析了桥梁钢Q345q腐蚀不同时间形成的锈层物相、形貌、结构及其电化学特性。结果表明:虽然在除冰盐介质中480 h内腐蚀速率小,但表面形成含有β-FeOOH和氯化物等不稳定可溶性的腐蚀产物,导致锈层疏松,腐蚀电流增大,锈层不具保护性;在NaHSO3介质中的腐蚀速率较高,但随着腐蚀时间的延长锈层致密性增加,腐蚀速率下降较快,锈层阳极稳态腐蚀电流减小,锈层具有保护性;而在混合介质中腐蚀行为为耦合效应,由于氯化物等腐蚀产物使得锈层致密性下降,但锈层仍具有一定的保护性。

关键词 桥梁钢Q345q除冰盐NaHSO3介质混合介质腐蚀行为    
Abstract

Corrosion behavior of Q345q bridge steel was studied by dry-wet alternating accelerated corrosion test method with three designed media, which aim to simulate three environmental conditions commonly encountered in the Northwest China, namely deicing-, industrial- and industrial with deicing-conditions respectively. While the corrosion kinetics curves of Q345q bridge steel were measured by weight loss method. The morphology, microstructure and phase composition, as well as the electrochemical properties of the rust scales of Q345q bridge steel corroded for different time were assessed by means of SEM, XRD and electrochemical workstation. Results show that although the corrosion rate is small in the deicing salt medium within 480 h, the corrosion product contains unstable and soluble compounds such as β-FeOOH and chloride, which results in loose rust scale, the corrosion current of the rust scale increases with time, thus which is poor in protectiveness. The corrosion rate in the sodium bisulfite medium is higher, but with the increase of corrosion time, the corrosion rate decreases rapidly, the anode corrosion current of the rust scale decreases, therewith, the rust scale is protective. In the mixed medium, the corrosion behavior is a coupling effect. Due to the existence of corrosion products such as chlorides, the compactness of the rust scale is poor, but which exhibits protectiveness to a certain degree in comparison with that in the deicing salt medium.

Key wordsbridge steel Q345q    deicing salt    NaHSO3 medium    mixed medium    corrosion behavior
收稿日期: 2018-09-05     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金(51461029);广东省“扬帆计划”引进创新创业团队专项资助 (2015YT02G090) 和甘肃省交通厅科研项目(2015YT02G090);甘肃省交通厅科研项目(2017-16 and 2017-19)
通讯作者: 郭铁明     E-mail: guotm@lut.cn
Corresponding author: Tieming GUO     E-mail: guotm@lut.cn
作者简介: 郭铁明,女,1969年生,教授

引用本文:

郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
Tieming GUO, Yanwen ZHANG, Junshan QIN, Zhitao SONG, Jianjun DONG. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 319-330.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.127      或      https://www.jcscp.org/CN/Y2019/V39/I4/319

Corrosive mediumCompositionpHStandard
Deicing saltNa2SO4 (0.500±0.002) g9.3±0.5GB/T 19746-2005
Na2SO3 (0.250±0.002) g
Na2S2O3 (0.100±0.002) g
NaCl (52.5±1) g
CaCl2·2H2O (52.5±1) g
NaHSO30.01 mol/L NaHSO34.4TB/T2375-1993
Mixed solutionDeicing salt+0.01 mol/L NaHSO34.8
表1  3种模拟大气环境的腐蚀介质成分
图1  Q345q钢在3种腐蚀介质下的腐蚀动力学曲线
Corrosive mediumFirst stepSecond step
AnR2AnR2
Deicing salt0.01291.04260.98710.04640.79900.9984
NaHSO30.08691.89390.98350.21770.82910.9782
Mixed solution0.00381.50390.98920.53310.48640.9999
表2  双对数线性拟合结果
图2  桥梁钢Q345q在干湿循环不同时间后腐蚀产物的XRD谱
图3  Q345q钢在3种介质中腐蚀不同时间的锈层宏观形貌
图4  Q345q钢在除冰盐中腐蚀不同时间的微观形貌
图5  Q345q钢在NaHSO3溶液中腐蚀不同时间的微观形貌
图6  Q345q钢在混合溶液中腐蚀不同时间的微观形貌
图7  Q345q钢在3种介质中腐蚀不同时间的截面形貌
MediumTime / hRust layer thickness / μm
Deicing salt7210.2273
14421.1364
28844.6818
NaHSO37229.0909
14437.9545
28857.2273
Deicing salt+ NaHSO37212.0000
14425.7273
28842.9091
表3  Q345q钢在3种介质中腐蚀不同时间后锈层的平均厚度
图8  Q345q钢在3种介质中腐蚀不同时间的极化曲线
Time / hCorrosion solutionEcorr / VIcorr / mA·cm-2
24Deicing salt-0.89660.0364
NaHSO3-0.84210.4018
Mixed solution-0.87010.2293
72Deicing salt-0.83130.1557
NaHSO3-0.82790.3734
Mixed solution-0.84210.2565
144Deicing salt-0.77930.2245
NaHSO3-0.64130.2487
Mixed solution-0.77680.2287
288Deicing salt-0.72790.2403
NaHSO3-0.66930.1972
Mixed solution0.68790.1986
480Deicing salt-0.67970.2474
NaHSO3-0.53520.0520
Mixed solution-0.61780.1729
表4  带锈Q345q钢的极化曲线参数
[1] GuoA M, ZouD H. The status of bridge steel in China and the development of weathering bridge steel [A]. Proceedings of the National Conference on Rolling Production Technology [C]. Dalian, 2008
[1] (郭爱民, 邹德辉. 我国桥梁用钢的现状及耐候桥梁钢的发展 [A]. 2008年全国轧钢生产技术会议论文集 [C]. 大连, 2008)
[2] WangL, GaoC R, WangY F, et al. Development of bridge steels in China [J]. Mater. Mech. Eng., 2008, 32(5): 1
[2] (王磊, 高彩茹, 王彦锋等. 我国桥梁钢的发展历程及展望 [J]. 机械工程材料, 2008, 32(5): 1)
[3] HaraS, KamimuraT, MiyukiH, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge [J]. Corros. Sci., 2007, 49: 1131
[4] XiaY. Corrosion behavior of carbon steel and weathering steel in several typical conditions [D]. Hangzhou: Zhejiang University, 2014
[4] (夏妍. 碳钢和耐侯钢在若干典型环境下的腐蚀行为研究 [D]. 杭州: 浙江大学, 2014)
[5] KeW, DongJ H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1362
[5] (柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1362)
[6] XiaoY D, WangG Y, LiX G. Corrosion behavior of atmospheric environment and corrosion feature of materials in our western area [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 253
[6] (萧以德, 王光雍, 李晓刚. 我国西部地区大气环境腐蚀性及材料腐蚀特征 [J]. 中国腐蚀与防护学报, 2003, 23: 253)
[7] CaoC N, WangG Y, LiX L, et al. Natural Environmental Corrosion of Chinese Materials [M]. Beijing: Chemical Industry Press, 2005: 69
[7] (曹楚南, 王光雍, 李兴濂等. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005: 69)
[8] Casta?oJ G, BoteroC A, RestrepoA H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
[9] MaY T, LiY, WangF H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
[10] GaoX L, FuG Q, ZhuM Y, et al. Corrosion behavior of low-alloy weathering steel in environment containing chloride ions [J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 1282
[10] (高新亮, 付贵勤, 朱苗勇等. 低合金耐候钢在含氯离子环境中的腐蚀行 [J]. 北京科技大学学报, 2012, 34: 1282)
[11] GaoX L, ZhuM Y, FuG Q, et al. Corrosion behavior of bridge weathering steel in environment containing Cl- [J]. Acta Metall. Sin., 2011, 47: 520
[11] (高新亮, 朱苗勇, 付贵勤等. 桥梁耐候钢在含Cl-离子环境中的腐蚀行为 [J]. 金属学报, 2011, 47: 520)
[12] ChenW J, HaoL, DongJ H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014, 50: 802
[12] (陈文娟, 郝龙, 董俊华等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014, 50: 802)
[13] GuoM X, PanC, WangZ Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial Atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
[13] (郭明晓, 潘晨, 王振尧等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65)
[14] ZhangX, YangS W, ZhangW H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
[15] WangJ H, WeiF I, ChangY S, et al. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres [J]. Mater. Chem. Phys., 1997, 47: 1
[16] CollinsJ B, LevinH. Diffuse interface model of diffusion-limited crystal growth [J]. Phys. Rev., 1985, 31B: 6119
[17] LyonS B, ThompsonG E, JohnsonJ B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: Aluminum, galvanized steel, and steel [J]. Corros. Sci., 1987, 43: 719
[18] KeiserJ T, BrownC W, HeidersbachR H. Characterization of the passive film formed on weathering steels [J]. Corros. Sci, 1983, 23: 251
[19] TownsendH E, ZoccolaJ C. STP767 [M]. Philadelphia, PA: ASTM, 1982: 45
[20] MaY T, LiY, WangF H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2010, 52: 1796
[21] ZhangD D, WangZ X, ZhaoC Y, et al. Atmospheric corrosion behavior of Q345 steel in a simulated acidic marine aerosols environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 326
[21] (张丹丹, 王振尧, 赵春英等. Q345钢在模拟酸性海洋气溶胶环境下的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 326)
[22] WangZ Y, YuQ C, ChenJ J, et al. Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 53
[22] (王振尧, 于全成, 陈军君等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 2014, 34: 53)
[23] NishimuraT, KatayamaH, NodaK, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
[24] YuQ C, WangZ Y, WangC. Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative condition [J]. Acta Metall. Sin., 2010, 46: 1133
[24] (于全成, 王振尧, 汪川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为 [J]. 金属学报, 2010, 46: 1133)
[25] HanW, WangJ, WangZ Y, et al. Atmospheric corrosion of five low alloy steels [J]. Corros. Sci. Prot. Technol., 2003, 15: 315
[25] (韩薇, 汪俊, 王振尧等. 低合金钢耐大气腐蚀规律研究 [J]. 腐蚀科学防护与技术, 2003, 15: 315)
[26] DongJ, DongJ H, HanE-H, et al. Corrosion behavior of rusted mild steel under means of wet/dry alternate conditions [J]. Corros. Sci. Prot. Technol., 2006, 18: 415
[26] (董杰, 董俊华, 韩恩厚等. 低碳钢带锈电极的腐蚀行为 [J]. 腐蚀科学与防护技术, 2006, 18: 415)
[27] DongJ, DongJ H, HanE-H, et al. Rusting evolvement of mild steel under wet/dry cyclic condition with pH 4 NaHSO3 solution [J]. Corros. Sci. Prot. Technol., 2009, 21: 1
[27] (董杰, 董俊华, 韩恩厚等. 低碳钢在模拟酸雨大气条件下的锈蚀演化 [J]. 腐蚀科学与防护技术, 2009, 21: 1)
[28] HaraS, MiuraM, UchiumiY, et al. Suppression of deicing salt corrosion of weathering steel bridges by washing [J]. Corros. Sci., 2005, 47: 2419
[29] WangJ H, WeiF I, ChangY S, et al. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres [J]. Mater. Chem. Phys., 1997, 47: 1
[30] SinghD D N, YadavS, SahaJ K. Role of climatic conditions on corrosion characteristics of structural steels [J]. Corros. Sci., 2008, 50: 93
[31] QuQ, YanC W, ZhangL, et al. Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel [J]. Acta Metall. Sin., 2002, 38: 1062
[31] (屈庆, 严川伟, 张蕾等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应 [J]. 金属学报, 2002, 38: 1062)
[32] LiD L, FuG Q, ZhuM Y, et al. Effect of SO2 pollution on corrosion behavior of Q235B steel in hot and humid marine atmosphere [J]. Iron Steel, 2017, 52(1): 68
[32] (李东亮, 付贵勤, 朱苗勇等. 湿热海洋大气中SO2污染对Q235B钢腐蚀行为的影响 [J]. 钢铁, 2017, 52(1): 68)
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[7] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[8] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[9] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[10] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[11] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[12] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[13] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[14] 周开河,方云辉,徐孝忠,江炯,郭小平,刘栓,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响II—温度和溶解氧浓度[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[15] 王子豪,黄运华,李佳,杨浪,谢冬寒. Nb对X80钢焊接热影响区在模拟海水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 604-610.