Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (1): 29-35    DOI: 10.11902/1005.4537.2018.125
  研究报告 本期目录 | 过刊浏览 |
高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究
程多云1,赵晋斌2,刘波3,姜城4,付小倩4,程学群4()
1. 中交第二航务工程局有限公司 武汉 430040
2. 南京钢铁股份有限公司 南京 210035
3. 中交公路规划设计院有限公司 北京 100088
4. 北京科技大学腐蚀与防护中心 北京 100083
Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives
Duoyun CHENG1,Jinbin ZHAO2,Bo LIU3,Cheng JIANG4,Xiaoqian FU4,Xuequn CHENG4()
1. China Communications Second Navigation Engineering Bureau Co., Ltd., Wuhan 430040, China
2. NanJing Iron & Steel Co., Ltd., Nanjing 210035, China
3. China Communications Construction Company Highway Consultants Co., Ltd. HPDI, Beijing 100088, China
4. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(11714 KB)   HTML
摘要: 

通过室外暴晒实验,对比研究了高镍钢和耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为。利用扫描电子显微镜、激光共聚焦显微镜和X射线衍射技术等分析了两种材料的表面腐蚀产物相组成和基体腐蚀形貌,并结合电化学阻抗谱测试对比了两种钢材腐蚀产物膜的耐蚀性能。结果表明,在严酷海洋大气环境中,传统耐候钢和高镍钢表面均出现较为致密的锈层,且锈层主要由Fe3O4α-FeOOH,γ-FeOOH和β-FeOOH结晶相组成。然而,由于添加了Ni,高镍钢表面锈层更加致密,对Cl-抵抗作用更强,且锈层保护性指数α/γ更高,因此能够对基体提供更好的防护效果。电化学阻抗谱测量结果也表明,高镍钢表面腐蚀产物膜电阻值更大,具有更好的保护作用,从而降低了高镍钢在严酷海洋大气环境中的腐蚀速率。

关键词 高镍钢马尔代夫海洋大气腐蚀产物耐蚀性    
Abstract

Corrosion behavior of high nickel weathering steel and conventional weathering steel was contrastively studied in a harsh marine atmosphere environment at Maldives through one-year field exposure tests. Then the corrosion products and the surface morphology of the steels after exposure were characterized by means of scanning electron microscope (SEM), laser scanning confocal microscope (LSCM) and X-ray diffractometer (XRD), while the corrosion resistance of corrosion products formed on the steels was also assessed by electrochemical impedance spectroscopy (EIS). Results indicated that a compact rust scale composed of Fe3O4, α-FeOOH, γ-FeOOH and β-FeOOH formed on these two steels. However, the high nickel weathering steel exhibited better weather resistance due to the addition of Ni, which presented the following peculiar features: a denser rust scale with stronger resistance to Cl- attack and higher α/γ ratio. EIS results confirmed that the corrosion product film of high nickel weathering steel had higher corrosion resistance, thus slowing down its corrosion rate in the harsh marine atmosphere.

Key wordsNi-advanced steel    Maldives    marine atmosphere    corrosion product    corrosion resistance
收稿日期: 2018-09-04     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2016YFB0300604)
通讯作者: 程学群     E-mail: chengxuequn@ustb.edu.cn
Corresponding author: Xuequn CHENG     E-mail: chengxuequn@ustb.edu.cn
作者简介: 程多云,男,1982年生,高级工程师

引用本文:

程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
Duoyun CHENG, Jinbin ZHAO, Bo LIU, Cheng JIANG, Xiaoqian FU, Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 29-35.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.125      或      https://www.jcscp.org/CN/Y2019/V39/I1/29

SteelCMnSPSiNiCrCuMoFe
High nickel WS0.030.560.0030.0140.463.400.230.180.06Bal.
Conventional WS0.050.840.0020.0150.500.270.310.420.06Bal.
表1  高镍钢和传统耐候钢的化学组成
图1  高镍钢和传统耐候钢的金相组织结构
图2  室外暴晒1 a后两种钢的表面腐蚀产物微观形貌
图3  室外暴晒1 a后传统耐候钢和高镍钢的横截面腐蚀产物微观形貌
PointFeClSiNiCr
a59.723.260.760.541.01
b59.162.060.600.371.18
c65.331.850.710.190.65
d62.492.010.440.170.36
e58.340.950.743.360.82
f58.261.460.363.120.64
g58.452.470.402.280.24
表2  传统耐候钢和高镍钢的腐蚀产物横截面不同位置处的元素组成
图4  高镍钢和传统耐候钢在马累岛暴晒1 a后的腐蚀产物相组成
图5  高镍钢和传统耐候钢在马累岛暴晒1 a后的表面轮廓
图6  高镍钢和传统耐候钢在马累岛暴晒1 a后的侧面形貌
图7  高镍钢和传统耐候钢在马累岛暴晒1 a后在3.5% NaCl溶液中的Nyquist曲线
SteelRf / Ω·cm-2Rt / Ω·cm-2
High nickel WS79.264.9
Conventional WS33.545.1
表3  EIS拟合电路中Rt和Rf值
[1] Yu Q. Review and prospect of weathering steel [J]. J. Iron Steel Res., 2007, 19(11): 1
[1] 于千. 耐候钢发展现状及展望 [J]. 钢铁研究学报, 2007, 19(11): 1
[2] Zhang P P, Yang Z M, Chen Y, et al. Corrosion behavior of Cr bearing weathering steel in simulated marine atmosphere [J].J.Chin . Soc. Corros. Prot., 2017, 37: 93
[2] (张飘飘, 杨忠民, 陈颖等. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 93
[3] Li X G, Zhang D W, Liu Z Y, et al. Share corrosion data [J]. Nature, 2015, 527: 441
[4] Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
[5] Wu W, Zeng Z P, Cheng X Q, et al. Atmospheric corrosion behavior and mechanism of a Ni-advanced weathering steel in simulated tropical marine environment [J]. J. Mater. Eng. Perform., 2017, 26: 6075
[6] Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
[7] Cheng X Q, Tian Y W, Li X G, et al. Corrosion behavior of nickel-containing weathering steel in simulated marine atmospheric environment [J]. Mater. Corros., 2014, 65: 1033
[8] Diaz I, Cano H, De La Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
[9] Gu J L, Yan R, Jun H, et al. Effect of Ni content on atmospheric corrosion of low alloy steels [J]. Corros. Prot., 2010, 31: 5
[9] 顾家琳, 闫睿, 久本淳等. 镍含量对钢材大气腐蚀的影响 [J]. 腐蚀与防护, 2010, 31: 5
[10] Chen X, Dong J H, Han E-H, et al. The influence of Ni alloying on corrosion behaviour of low alloy steels under wet/dry cyclic conditions [J]. Can. Metall. Quart., 2007, 46: 195
[11] ISO. ISO 9223: 1992 Corrosion of metals and alloys-corrosivity of atmospheres-classification [S]. Switzerland: ISO, 1992
[12] Wu W, Hao W K, Liu Z Y, et al. Corrosion behavior of E690 high-strength steel in alternating wet-dry marine environment with different pH values [J]. J. Mater. Eng. Perform., 2015, 24: 4636
[13] Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
[14] Wang Z F, Liu J R, Wu L X, et al. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corros. Sci., 2013, 67: 1
[15] Cheng X Q, Feng Z C, Li C T, et al. Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments [J]. Electrochim. Acta, 2011, 56: 5860
[16] Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[4] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[7] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[8] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[10] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[12] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[13] 冯亚丽,白子恒,陈利红,魏丹,张东玖,姚琼,吴俊升,董超芳,肖葵. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 519-526.
[14] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.