Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (3): 260-266    DOI: 10.11902/1005.4537.2018.108
  研究报告 本期目录 | 过刊浏览 |
等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究
达波,余红发(),麻海燕,吴彰钰
南京航空航天大学土木工程系 南京 210016
Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete
Bo DA,Hongfa YU(),Haiyan MA,Zhangyu WU
Department of Civil Engineering, Nanjing University of Aeronautic and Astronautic, Nanjing 210016, China
全文: PDF(2030 KB)   HTML
摘要: 

采用电化学阻抗谱法 (EIS),通过测试不同暴露时间珊瑚混凝土 (CAC) 中钢筋的Nyquist图和Bode阻抗模图,探索了适用于拟合CAC中钢筋腐蚀行为的等效电路 (EEC) 模型,建立了电荷转移电阻 (Rct) 与极化电阻 (Rp) 的转换关系,探讨了保护层厚度和钢筋种类对CAC中钢筋耐蚀性能的影响。结果表明:适用于CAC中钢筋腐蚀行为的EEC模型电路编码分别为:钝化阶段Rs(CcRc)(QdlRct) 和锈蚀阶段Rs(CcRc)(Qdl(RctW))。随着保护层厚度的增大,钢筋的Rp逐渐增大,即钢筋的耐蚀性能逐渐增强。此外,CAC中不同种类钢筋的耐腐蚀性能规律为:2205双相不锈钢>316不锈钢>有机新涂层钢筋>锌铬涂层钢筋>普通钢筋。因此,为了延长岛礁CAC结构的服役寿命,建议采用有机新涂层钢筋、保护层厚度至少为5.5 cm。

关键词 珊瑚混凝土钢筋锈蚀电化学阻抗谱法等效电路保护层厚度钢筋种类    
Abstract

Nyquist plots and Bode impedance module plots of rebar steel in coral aggregate concrete (CAC) exposed in artificial sea water for different times were assessed by means of electrochemical impedance spectroscopy (EIS). The suitable equivalent electric circuit (EEC) for fitting data of the rebar steel corrosion in CAC was proposed. The conversion relationship between charge transfer resistance (Rct) and polarization resistance (Rp) was established. The influence of the thickness of concrete cover and the rebar steel types on the corrosion behavior of rebar steel in CAC was discussed. The results show that: the EEC mode for the rebar steel electrode in CAC were Rs(CcRc)(QdlRct) in the passivation stage and Rs(CcRc)(Qdl(RctW)) in the corrosion stage respectively. As the thickness of concrete cover increased, the Rct of rebar steel gradually increased, as did the corrosion resistance. Moreover, the corrosion resistance of different rebar steels decreases as the following sequence: 2205 duplex stainless steel >316 stainless steel >new organic coated steel >zinc-chromium coated steel >common steel. Therefore, for CAC structures in actual engineering practice, it was suggest to adopt new organic coated steel, while the thickness of concrete cover should be thicker than 5.5 cm, which could prolong the initial stage of rebar steel corrosion, reduce the corrosion rate and prolong the service life of the CAC structure.

Key wordscoral aggregate concrete    reinforcement corrosion    electrochemical impedance spectroscopy method    equivalent electric circuit    concrete cover thickness    reinforcement types
收稿日期: 2018-07-31     
ZTFLH:  TU528  
基金资助:国家自然科学基金(51508272);国家自然科学基金(51678304);国家自然科学基金(51878350);国家自然科学基金(11832013);江苏省自然科学基金(BK20180433);中国博士后科学基金(2018M630558)
通讯作者: 余红发     E-mail: yuhongfa@nuaa.edu.cn
Corresponding author: Hongfa YU     E-mail: yuhongfa@nuaa.edu.cn
作者简介: 达波,男,1988年生,博士

引用本文:

达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
Bo DA, Hongfa YU, Haiyan MA, Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 260-266.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.108      或      https://www.jcscp.org/CN/Y2019/V39/I3/260

SteelCSiMnPSCrNiMoNFe
A0.200.561.420.020.04------------Bal.
E0.030.600.800.010.0717.1412.582.28---Bal.
D0.030.480.830.030.0121.604.712.680.16Bal.
表1  钢筋的化学成分
No.Steel typeSteel quantityInhibitorSpecimen quantity
CAC-11B153%CN2
CAC-12A153%CN2
CAC-13C153%CN2
CAC-14E153%CN2
CAC-15D153%CN2
表2  CAC的试块编号
图1  等效电路模型EEC1
图2  等效电路模型EEC2
图3  等效电路模型EEC3
图4  不同等效电路拟合得到的Rct与Rp之间的关系

Rp

kΩ·cm2

Icorr

μA·cm-2

Vcorr

mm·a-1

Rct

kΩ·cm2

Corrosion rate
2.5~0.2510~1000.1~11.86~0.186Much higher
25~2.51~100.01~0.118.6~1.86High
250~250.1~10.001~0.01186~18.6Moderate, low
>250<0.1<0.001>186Negligible
表3  Rp、Rct与钢筋锈蚀速率之间的关系
图5  不同等效电路模型拟合的Nyquist图
No.EEC1EEC2EEC3Rp / Ω·cm2
Rct / Ω·cm2σ2aRct / Ω·cm2σ2aRct / Ω·cm2σ2
CAC-11297254.00×10-513747189672.00×10-524505178462.32×10-343472
CAC-12218211.30×10-44301159721.00×10-410150175122.08×10-326122
CAC-13159432.50×10-4498062971.70×10-414626101082.92×10-320923
CAC-14376332.04×10-319294255142.04×10-331413208188.80×10-456927
CAC-15471471.14×10-35772390511.76×10-213868318441.46×10-252919
表4  不同模型测得的Rct与Rp对比
图6  CAC中不同种类钢筋的EIS谱
图7  不同保护层厚度CAC中有机新涂层钢筋的EIS谱
[1] Yu H F, Da B, Ma H Y, et al. Durability of concrete structures in tropical atoll environment [J]. Ocean Eng., 2017, 135: 1
[2] Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete—A review [J]. Cement Concr. Res., 2009, 39: 1122
[3] Da B, Yu H F, Ma H Y, et al. Chloride diffusion study of coral concrete in a marine environment [J]. Constr. Build. Mater., 2016, 123: 47
[4] Da B, Yu H F, Ma H Y, et al. Reinforcement corrosion research based on the linear polarization resistance method for coral aggregate seawater concrete in a marine environment [J]. Anti-Corros. Methods Mater., 2018, 65: 458
[5] Gartner N, Kosec T, Legat A. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment [J]. Mater. Chem. Phys., 2016, 184: 31
[6] Da B, Yu H F, Ma H Y, et al. Influence of inhibitors on reinforced bar corrosion of coral aggregate seawater concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 152
[6] (达波, 余红发, 麻海燕等. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 152)
[7] John D G, Searson P C, Dawson J L. Use of AC impedance technique in studies on steel in concrete in immersed conditions [J]. Br. Corros. J., 1981, 16: 102
[8] Shi M L, Liu J Y, Wu K R. AC impedance method to study the mechanism of corrosion of rebar in concrete [J]. J. Build. Mater., 1998, 1(3): 206
[8] (史美伦, 刘俊彦, 吴科如. 混凝土中钢筋锈蚀机理研究的交流阻抗方法 [J]. 建筑材料学报, 1998, 1(3): 206)
[9] Shi M L. Impedance Spectroscopy of Concrete [M]. Beijing: China Railway Publishing House, 2003
[9] (史美伦. 混凝土阻抗谱 [M]. 北京: 中国铁道出版社, 2003)
[10] Xu C. Electrochemical characteristic and related testing and monitoring technology of the steel corrosion of concrete structures [D]. Hangzhou: Zhejiang University, 2012
[10] (许晨. 混凝土结构钢筋锈蚀电化学表征与相关检/监测技术 [D]. 杭州: 浙江大学, 2012)
[11] Da B, Yu H F, Ma H Y, et al. Experimental investigation of whole stress-strain curves of coral concrete [J]. Constr. Build. Mater., 2016, 122: 81
[12] Millard S G, Gowers K R, Gill J S. Reinforcement corrosion assessment using linear polarisation techniques [J]. ACI Mater. J., 1991, 128: 373
[13] Shi J J. Corrosion of steel in concrete under simultaneous loading and environment effects [D]. Nanjing: Southeast University, 2011
[13] (施锦杰. 荷载与环境耦合因素作用下混凝土中钢筋锈蚀研究 [D]. 南京: 东南大学, 2011)
[14] González J A, Molina A, Escudero M L, et al. Errors in the electrochemical evaluation of very small corrosion rates—I. Polarization resistance method applied to corrosion of steel in concrete [J]. Corros. Sci., 1985, 25: 917
[15] Keddam M, Nóvoa X R, Soler L, et al. An equivalent electrical circuit of macrocell activity in facing electrodes embedded in cement mortar [J]. Corros. Sci., 1994, 36: 1155
[16] Tang H. Research on corrosion of steel bar in magnesium phosphate cement [D]. Chongqing: Chongqing University, 2015
[16] (唐浩. 磷酸镁水泥体系中钢筋锈蚀行为研究 [D]. 重庆: 重庆大学, 2015)
[17] Macías A. Comparison of different electrochemical techniques for corrosion-rate determination of zinc-coated reinforcements in simulated concrete pore solutions [J]. Mater. Struct., 1991, 24: 456
[18] Da B, Yu H F, Ma H Y, et al. Influence of concrete strength grade to the shear behavior of coral aggregate reinforced concrete beam [J]. Sci. Sin. Technol., 2019, 49: 212
[18] (达波, 余红发, 麻海燕等. 混凝土强度等级对全珊瑚海水钢筋混凝土梁抗剪性能的影响 [J]. 中国科学: 技术科学, 2019, 49: 212)
[19] Zeng C S. Electrochemical research of 316L stainless steel corrosion [D]. Kunming: Kunming University of Science and Technology, 2006
[19] (曾初升. 316L不锈钢腐蚀性能电化学研究 [D]. 昆明: 昆明理工大学, 2006)
[20] Fan Q Q, Hua L. Factors related to 2205 duplex stainless steel corrosion [J]. Corros. Sci. Prot. Technol., 2014, 26: 178
[20] (范强强, 华丽. 2205双相不锈钢腐蚀行为的影响因素 [J]. 腐蚀科学与防护技术, 2014, 26: 178
[21] Zhao Y L, Gao M, Hu J M, et al. Electrochemical investigation of corrosion performance of electrophoretic hybrid epoxy-silane coatings on galvanized steel [J]. Corros. Sci. Prot. Technol., 2016, 28: 407
[21] (赵艳丽, 高媚, 胡吉明等. 镀锌钢表面硅烷掺杂电泳漆涂层的腐蚀电化学行为研究 [J]. 腐蚀科学与防护技术, 2016, 28: 407)
[1] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[2] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[3] 元辛, 岳珠峰, 温世峰, 李磊. 铝合金表面有机硅环氧涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 375-381.
[4] 许晨 岳增国 金伟良. 电化学频率调制技术在混凝土钢筋锈蚀中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[5] 蔡新华,徐世,尹世平,何真. 超高韧性水泥基复合材料与锈蚀钢筋粘结性能试验研究[J]. 中国腐蚀与防护学报, 2012, 32(3): 228-234.
[6] 周德璧 崔莉莉 李琳 曲军林 胡剑文 赖渊.  环氧树脂涂覆碳钢在垃圾渗滤液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(1): 50-54.
[7] 周萍; 汪小琳; 王庆富; 杨江荣; 王晓红 . 铀在三种溶液中的动电位极化和电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2008, 28(4): 215-218 .
[8] 李谋成; 林海潮; 曹楚南 . 碳钢在土壤中腐蚀的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2000, 20(2): 111-117 .
[9] 刘宏伟;许刚;宋光铃;林海潮;曹楚南;孟宪林;庞国友;张宏志;董建梁. 防锈颜料Pb_3O_4在有机涂层中作用机理的EIS分析[J]. 中国腐蚀与防护学报, 1998, 18(1): 52-56.
[10] 张鉴清. 富锌涂层的电化学阻抗谱特性[J]. 中国腐蚀与防护学报, 1996, 16(3): 175-180.
[11] 宋光铃;曹楚南;林海潮. 电化学控制条件下不可逆电极过程交流阻抗的统一换算电路和电化学参数解析[J]. 中国腐蚀与防护学报, 1994, 14(2): 113-122.