Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (3): 227-234    DOI: 10.11902/1005.4537.2018.068
  研究报告 本期目录 | 过刊浏览 |
微生物致裂的热力学和动力学分析
吴堂清1,2,周昭芬1,2,王鑫铭1,2,张德闯2,尹付成1,2,孙成3()
1. 湘潭大学 材料设计及制备技术湖南省重点实验室 湘潭 411105
2. 湘潭大学材料科学与工程学院 湘潭 411105
3. 中国科学院金属研究所 材料环境腐蚀研究中心 沈阳 110016
Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking
Tangqing WU1,2,Zhaofen ZHOU1,2,Xinming WANG1,2,Dechuang ZHANG2,Fucheng YIN1,2,Cheng SUN3()
1. Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
2. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
3. Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1275 KB)   HTML
摘要: 

现场调查和实验研究均证实了微生物致裂的存在并提出了合理的机理模型,但是缺乏微生物致裂的热力学和动力学理论分析。基于Gutman的力学-化学交互作用理论、微生物能量学和腐蚀电化学理论,本文尝试给出SRB/NRB致裂的热力学和动力学解释。热力学计算结果表明,应力和SRB/NRB共同作用下金属材料腐蚀反应的摩尔Gibbs自由能下降,腐蚀反应向环境释放出更多的热量,从热力学上来说具有更高的腐蚀趋势。与SRB腐蚀和SRB致裂相比,铁基金属材料NRB腐蚀和NRB致裂具有更强的热力学倾向。动力学分析表明,外加应力和微生物共同作用下金属材料腐蚀速率和微裂纹扩展速率加快。本工作的研究结果能丰富人们对金属材料菌致开裂行为的认识。

关键词 热力学微生物腐蚀硫酸盐还原菌硝酸盐还原菌    
Abstract

Microbiologically influenced corrosion (MIC) is one of the most common corrosion types of buried pipelines. Many investigations in field survey and laboratory simulation studies have verified that microorganisms in soil and applied stresses can synergistically participate in and significantly affect the crack initiation and propagation of pipeline steels. This phenomenon was named as “microbiologically assisted cracking (MAC)”. Relevant mechanisms, such as pitting mechanism, hydrogen damage mechanism, have been proposed to illuminate this phenomenon. However, there is still a lack of thermodynamic interpretation of MAC and the dynamic analysis deriving from thermodynamic interpretation. In the paper, the thermodynamic interpretation and the dynamic analysis for sulfate reducing bacteria (SRB) /nitrate-reducing bacteria (NRB) -assisted cracking were proposed based on the mechano-chemical interaction theory, bioenergetics and corrosion electrochemistry. The thermodynamic results showed that under the combined actions of SRB/NRB and external stress, the changes of Gibbs free energy of the corrosion reactions decrease and the releasing energies increase accordingly, revealing the stronger corrosion tendency in thermodynamics. For Fe-based alloys, NRB corrosion and NRB-assisted cracking are the more thermodynamically favorable processes, as compared to SRB corrosion and SRB-assisted cracking, respectively. The dynamic results showed that the corrosion rate and the crack propagation rate increase under the combined actions of applied stresses and microorganisms.

Key wordsthermodynamics    microbiologically induced corrosion    sulfate-reducing bacteria    nitrate reducing bacteria
收稿日期: 2018-05-22     
ZTFLH:  TG172.4  
基金资助:国家自然科学基金(51601164);国家自然科学基金(51871228);湖南省自然科学基金(2019JJ30023);中国博士后科学基金(2018T110836)
通讯作者: 孙成     E-mail: chengsun@imr.ac.cn
Corresponding author: Cheng SUN     E-mail: chengsun@imr.ac.cn
作者简介: 吴堂清,男,1987年生,博士,副教授

引用本文:

吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
Tangqing WU, Zhaofen ZHOU, Xinming WANG, Dechuang ZHANG, Fucheng YIN, Cheng SUN. Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 227-234.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.068      或      https://www.jcscp.org/CN/Y2019/V39/I3/227

图1  弹性应力作用下钢和铜的化学位变化
图2  塑性应变作用下钢和铜的化学位变化
[1] Wu T Q, Yan M C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in a near-neutral pH soil solution [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 93
[2] Ye S, Moradi M, Song Z L, et al. Inhibition effect of Pseudoalteromonas Piscicida on corrosion of Q235 carbon steel in simulated flowing seawater [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 174
[2] (叶赛, Moradi M, 宋振纶等. 杀鱼假交替单胞菌对模拟海水流动环境下Q235碳钢腐蚀的抑制行为 [J]. 中国腐蚀与防护学报, 2018, 38: 174)
[3] Chen J N, Wu J J, Wang P, et al. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on corrosion behavior of 907 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 402
[3] (陈菊娜, 吴佳佳, 王鹏等. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 402)
[4] Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
[4] (刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195)
[5] Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
[5] (管方, 翟晓凡, 段继周等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 1)
[6] National Transportation Safety Board. Pipeline accident report: Natural gas pipeline rupture and fire near Carlsbad, New Mexico [R]. Washington, D.C.National Transportation Safety Board, 2003
[7] Jacobson G A. Corrosion at prudhoe bay: A lesson on the line [J]. Mater. Perform., 2007, 46: 26
[8] Kholodenko V P, Jigletsova S K, Chugunov V A, et al. Chemicomicrobiological diagnostics of stress corrosion cracking of trunk pipelines [J]. Appl. Biochem. Microbiol., 2000, 36: 594
[9] Abedi S S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline [J]. Eng. Fail. Anal., 2007, 14: 250
[10] Wu T Q, Sun C, Xu J, et al. A study on bacteria-assisted cracking of X80 pipeline steel in soil environment [J]. Corros. Eng., Sci. Technol., 2018, 53: 265
[11] Javaherdashti R, Singh Raman R K, Panter C, et al. Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria [J]. Int. Biodeterior. Biodegrad., 2006, 58: 27
[12] Raman R K S, Javaherdashti R, Panter C, et al. Hydrogen embrittlement of a low carbon steel during slow strain testing in chloride solutions containing sulphate reducing bacteria [J]. Mater. Sci. Technol., 2005, 21: 1094
[13] Dom?alicki P, Lunarska E, Birn J. Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water [J]. Mater. Corros., 2007, 58: 413
[14] Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
[15] Stipani?ev M, Rosas O, Basseguy R, et al. Electrochemical and fractographic analysis of microbiologically assisted stress corrosion cracking of carbon steel [J]. Corros. Sci., 2014, 80: 60
[16] Robinson M J, Kilgallon P J. Hydrogen embrittlement of cathodically protected high-strength, low-alloy steels exposed to sulfate-reducing bacteria [J]. Corrosion, 1994, 50: 626
[17] Javaherdashti R. Impact of sulphate-reducing bacteria on the performance of engineering materials [J]. Appl. Microbiol. Biotechnol., 2011, 91: 1507
[18] Javaherdashti R, Nwaoha C, Ebenso E E. Fuzzy prediction of corrosion resistance of duplex stainless steel to biotic iron reducing bacteria and abiotic synthetic seawater environments: A phenomenological approach towards a multidisciplinary concept [J]. Int. J. Electrochem. Sci., 2012, 7: 12573
[19] Vaidya R U, Butt D P, Hersman L E, et al. Effect of microbiologically influenced corrosion on the tensile stress-strain response of aluminum and alumina-particle reinforced aluminum composite [J]. Corrosion, 1997, 53: 136
[20] Wu T Q, Yan M C, Zeng D C, et al. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria [J]. J. Mater. Sci. Technol., 2015, 31: 413
[21] Wu T Q, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment [J]. Corros. Sci., 2014, 88: 291
[22] Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435: 1098
[23] Yu L, Duan J Z, Du X Q, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry [J]. Electrochem. Commun., 2013, 26: 101
[24] Sheng X X, Ting Y P, Pehkonen S O. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316 [J]. Corros. Sci., 2007, 49: 2159
[25] Iverson W P. Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans [J]. Nature, 1968, 217: 1265
[26] Wu T Q, Yan M C, Zeng D C, et al. Hydrogen permeation of X80 steel with superficial stress in the presence of sulfate-reducing bacteria [J]. Corros. Sci., 2015, 91: 86
[27] Robinson M J, Kilgallon P J. A review of the effects of sulphate reducing bacteria in the marine environment on the corrosion fatigue and hydrogen embrittlement of high strength steels [R]. Health and Safety Executive - Offshore Technology Report, 1998
[28] Edyvean R G J. Hydrogen sulphide: a corrosive metabolite [J]. Int. Biodeter., 1991, 27: 109
[29] Gee R, Chen Z Y. Hydrogen embrittlement during the corrosion of steel by wet elemental sulphur [J]. Corros. Sci., 1995, 37: 2003
[30] Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522
[31] Eadie R L, Szklarz K E, Sutherby R L. Corrosion fatigue and near-neutral pH stress corrosion cracking of pipeline steel and the effect of hydrogen sulfide [J]. Corrosion, 2005, 61: 167
[32] Sowards J W, Williamson C H D, Weeks T S, et al. The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels [J]. Corros. Sci., 2014, 79: 128
[33] Serednyts'kyi Y A. Mechanism of corrosion of 40KH steel near a crack tip in the presence of sulfate-reducing bacteria [J]. Mater. Sci., 1997, 33: 29
[34] Wu T Q, Sun C, Ke W. Interpreting microbiologically assisted cracking with Ee-pH diagram [J]. Bioelectrochemistry, 2018, 120: 57
[35] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008: 158
[35] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 158)
[36] Yu L B, Yan M C, Wang B B, et al. Microbial corrosion of Q235 steel in acidic red soil environment [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 10
[36] (于利宝, 闫茂成, 王彬彬等. 酸性土壤环境中Q235钢的微生物腐蚀行为 [J]. 中国腐蚀与防护学报, 2018, 38: 10)
[37] Teng Y, Chen X, He C, et al. Effect of microstructure on corrosion behavior of X70 steel in 3.5%NaCl solution with SRB [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 168
[37] (滕彧, 陈旭, 何川等. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 168)
[38] Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
[39] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corros. Sci., 2011, 53: 955
[40] Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
[41] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
[42] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
[43] Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
[44] Mei M, Zheng H A, Chen H D, et al. Effect of sulfate reducing bacteria on corrosion behavior of Cu in circulation cooling water system [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 533
[44] (梅朦, 郑红艾, 陈惠达等. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 533)
[45] Gutman E M. Thermodynamics of the mechanico-chemical effect: II. The range of operation of nonlinear laws [J]. Sov. Mater. Sci., 1967, 3: 293
[46] Gutman E M. Thermodynamics of the mechanico-chemical effect: I. Derivation of basic equations. Nature of the effect [J]. Sov. Mater. Sci., 1968, 3: 190
[47] Gutman E M, translated by Jin S. Mechanochemistry and Corrosion Prevention of Metals [M]. Beijing: Science Press, 1989
[47] Gutman E M著, 金石译. 金属力学化学与腐蚀防护 [M]. 北京: 科学出版社, 1989
[48] Wu T Q, Yan M C, Xu J, et al. Mechano-chemical effect of pipeline steel in microbiological corrosion [J]. Corros. Sci., 2016, 108: 160
[49] Al-Nabulsi K M, Al-Abbas F M, Rizk T Y, et al. Microbiologically assisted stress corrosion cracking in the presence of nitrate reducing bacteria [J]. Eng. Fail. Anal., 2015, 58: 165
[50] Bogkris J O M, Beck W, Genshaw M A, et al. The effect of stress on the chemical potential of hydrogen in iron and steel [J]. Acta Metall., 1971, 19: 1209
[51] Xu L Y, Cheng Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution [J]. Corros. Sci., 2012, 64: 145
[52] Sharkeev Y P, Girsova N V, Ryabchikov A I, et al. Dislocation structure in coarse-grained copper after ion implantation [J]. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 1995, 106: 532
[53] Eiras J A. Influence of plastic deformation on the velocity and ultrasonic attenuation of copper single crystals [J]. J. Alloy. Compd., 2000, 310: 68
[54] Li D. Principles of Electrochemistry [M]. 3rd Ed. Beijing: Beijing University of Aeronautics and Astronautics Press, 2008: 212
[54] (李荻. 电化学原理 [M]. 第3版. 北京: 北京航空航天大学出版社, 2008: 212)
[55] Parkins R N. Current topics in corrosion: Factors influencing stress corrosion crack growth kinetics [J]. Corrosion, 1987, 43: 130
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[7] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[9] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[10] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[11] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[12] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[13] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[14] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[15] 陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.