Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 167-175    DOI: 10.11902/1005.4537.2018.053
  研究报告 本期目录 | 过刊浏览 |
组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性
冯旭,费敬银(),李倍,张嫚,郭琪琪
西北工业大学理学院 西安 710129
Corrosion Performance of Ni-Cr Alloy Coatings Prepared by Alloying Ni/Cr Multilayered Films of Thickness Modulation
Xu FENG,Jingyin FEI(),Bei LI,Man ZHANG,Qiqi GUO
Faculty of Science,Northwestern Polytechnical University, Xi'an 710129, China
全文: PDF(9253 KB)   HTML
摘要: 

利用双槽电沉积法制备组分调制Ni/Cr多层膜,探讨了Ni/Cr多层膜的合金化特性。借助SEM和EDS对Ni-Cr合金覆盖层的表面形貌、微观结构以及化学组成进行了表征。结果表明,减小周期厚度,提高热处理温度,延长保温时间有助于提高多层膜的合金化程度。经高温处理后,Ni-Cr合金覆盖层化学组分均一,与理论值基本吻合;其微观形貌由原来的结节状或颗粒状结构转变为块状结构,并且未产生热应力开裂等现象。与相同厚度的镍镀层和铬镀层比较,Ni-Cr合金覆盖层具有更好的耐腐蚀性能。

关键词 三价铬Ni-Cr合金合金化耐腐蚀性    
Abstract

Ni-Cr alloy coatings were prepared via a two-step process, namely Ni/Cr multilayered films of thickness modulation were firstly prepared by dual bath technique, which then subjected to alloying treatment at proper elevated temperature. The microstructure and chemical composition of Ni-Cr alloy coatings were characterized by means of SEM and EDS. The results show that with the decreasing period of modulation as well as the increasing heat-treatment temperature and time, the alloying process for Ni/Cr multilayered films could be expediently realized. After high temperature treatment, the chemical composition of the Ni-Cr alloy coatings is homogeneous on average, which is basically consistent with the theoretical value. Of which the surface morphology changes from the original nodular- or granular-like structure to block-like structure, while no thermal stress cracking is observed. Besides, their corrosion resistance was evaluated in comparison with nickel coating and chromium coating of the same thickness. It is found that the Ni-Cr alloy coatings have better corrosion resistance.

Key wordstrivalent chromium    Ni-Cr alloy    alloying    corrosive resistance
收稿日期: 2018-04-20     
ZTFLH:  TQ153  
通讯作者: 费敬银     E-mail: jyfei@nwpu.edu.cn
Corresponding author: Jingyin FEI     E-mail: jyfei@nwpu.edu.cn
作者简介: 冯旭,男,1993年生,硕士生

引用本文:

冯旭,费敬银,李倍,张嫚,郭琪琪. 组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性[J]. 中国腐蚀与防护学报, 2019, 39(2): 167-175.
Xu FENG, Jingyin FEI, Bei LI, Man ZHANG, Qiqi GUO. Corrosion Performance of Ni-Cr Alloy Coatings Prepared by Alloying Ni/Cr Multilayered Films of Thickness Modulation. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 167-175.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.053      或      https://www.jcscp.org/CN/Y2019/V39/I2/167

Composition and operating conditionNickel bathChromium bath
CrCl3·6H2O---80 g·L-1
CH3COONH4---20 g·L-1
HCOONa---35 g·L-1
NH4Cl---100 g·L-1
H3BO325 g·L-150 g·L-1
NiCO3·2Ni(OH)2·4H2O200 g·L-1---
CH3SO3H350 mL·L-1---
NiCl2·6H2O30 g·L-1---
pH1~22~4
T20~30 ℃20~30 ℃
Iav4~10 A·dm-25~10 A·dm-2
AnodeNickelDSA
表1  镍镀液和铬镀液的组分和工艺参数
图1  组分调制Ni/Cr多层膜不同周期厚度试样的表面形貌
图2  组分调制Ni/Cr多层膜不同周期厚度试样的表面微观形貌
图3  组分调制Ni/Cr多层膜不同周期厚度试样的断面微观形貌
LevelABC
Period thickness λ / μmTime t / hTemperature T / ℃
142300
225500
318800
表2  合金化参数因子及水平
Sample numberInfluencing factor and levelExperimental result
A: λ / μmB: t / hC: T / ℃Average value μStandard deviation σ
14230047.87%27.14
24550040.45%13.42
34880045.66%1.92
42250043.95%19.82
52580045.13%4.15
62830038.18%14.25
71280041.86%11.67
81530039.44%15.47
91850044.76%7.72
表3  正交试验结果
图4  周期厚度对多层膜合金化程度的影响
图5  热处理温度对多层膜合金化程度的影响
图6  保温时间对多层膜合金化程度的影响
图7  经高温合金化后的Ni-Cr合金覆盖层微观表面形貌
图8  Ni-Cr合金覆盖层试样热处理后的微观断面形貌
图9  不同镀层的极化曲线
图10  镀层经过全浸腐蚀实验后的微观形貌
SampleExposure area / cm2Quality difference / gCorrosion rate / mm·a-1
Nickel coating2.0×2.50.00330.0387
Chromium coating2.0×2.50.00100.0146
Alloying Ni-Cr coating2.0×2.50.00060.0065
表4  不铜镀层的全浸实验结果
[1] Rebak R B, Crook P. Nickel alloys for corrosive environments [J]. Adv. Mater. Proc., 2000, 157: 37
[2] Wang C, Ju S H, Xun S L, et al. Progress in research on nickel-based corrosion resistant alloys [J]. Mater. Rev., 2009, 23(3): 71
[2] 王成, 巨少华, 荀淑玲等. 镍基耐蚀合金研究进展 [J]. 材料导报, 2009, 23(3): 71
[3] Xing Z. Summery of Hastelloy C series alloys [J]. Proc. Equip. Piping, 2007, 44(2): 51
[3] 邢卓. Hastelloy C系列合金综述 [J]. 化工设备与管道, 2007, 44(2): 51
[4] Dong X Z, Zhao X C. A study on nickel-chromium corrosion-resistant alloys [J]. Cent. Iron Steel Res. Inst. Tech. Bull., 1984, 4(1): 1
[4] 董秀哲, 赵先存. 镍-铬系列耐蚀合金研究 [J]. 钢铁研究总院学报, 1984, 4(1): 1
[5] Li X F, Yang Z Y, Qin H, et al. High temperature corrosion behavior of a new-type high-Cr-content coating exposured to H2S-cotaining environment [J]. Chin. J. Rare Met., 2001, 25: 440
[5] 李学锋, 杨中元, 秦颢等. 新型高铬镍基合金涂层在H2S气氛中抗高温腐蚀性能的研究 [J]. 稀有金属, 2001, 25: 440
[6] Chen L, Gong Z Q, Huang Z J, et al. Study of nickel-chromium electrodeposit [J]. Electroplat. Finish., 1998, 17(4): 4
[6] 陈磊, 龚竹青, 黄志杰等. 电沉积镍铬合金的研究 [J]. 电镀与涂饰, 1998, 17(4): 4
[7] Song Y B, Chin D T. Current efficiency and polarization behavior of trivalent chromium electrodeposition process [J]. Electrochim. Acta, 2002, 48: 349
[8] Protsenko V S, Danilov F I, Gordiienko V O, et al. Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath [J]. Thin Solid Films, 2011, 520: 380
[9] Zeng Z X, Zhang Y X, Zhao W J, et al. Role of complexing ligands in trivalent chromium electrodeposition [J]. Surf. Coat. Technol., 2011, 205: 4771
[10] Duan D L, Li S, Ding X J, et al. Preparation of Ni-Cr alloy foams by electrodeposition technique [J]. Mater. Sci. Technol., 2008, 24: 461
[11] Sun J, Du D X, Lv H F, et al. Microstructure and corrosion resistance of pulse electrodeposited Ni-Cr coatings [J]. Surf. Eng., 2015, 31: 406
[12] Imanieh I, Yousefi E, Dolati A, et al. Experiments design for hardness optimization of the Ni-Cr alloy electrodeposited by pulse plating [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 558
[13] Lin K L, Hsu C J, Hsu I M, et al. Electroplating of Ni-Cr on steel with pulse plating [J]. J. Mater. Eng. Perform., 1992, 1: 359
[14] Zhou Y B, Zhao G G, Zhang H J. Fabrication and wear properties of co-deposited Ni-Cr nanocomposite coatings [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 104
[15] Zhang H, Liu L W, Bai J S, et al. Corrosion behavior and microstructure of electrodeposited nano-layered Ni-Cr coatings [J]. Thin Solid Films, 2015, 595: 36
[16] Du D X, Sun J, Lv H F, et al. Microstructure and corrosion-resistance performance of Ni-Cr alloy coatings by direct current and pulse current electrodeposition [J]. Rare Met. Mater. Eng., 2016, 45: 2046
[16] 杜登学, 孙健, 吕鸿飞等. 直流与脉冲电沉积Ni-Cr合金镀层的结构及耐蚀性 [J]. 稀有金属材料与工程, 2016, 45: 2046
[17] Aghdam A S, Allahkaram S R, Mahdavi S. Corrosion and tribological behavior of Ni-Cr alloy coatings electrodeposited on low carbon steel in Cr(III)-Ni(II) bath [J]. Surf. Coat. Technol., 2015, 281:144
[18] Ivanov I, Valkova T, Kirilova I. Corrosion resistance of compositionally modulated Zn-Ni multilayers electrodeposited from dual baths [J]. J. Appl. Electrochem., 2002, 32: 85
[19] Zhu X Y, Liu X J, Zong R L, et al. Microstructure and mechanical properties of nanoscale Cu/Ni multilayers [J]. Mater. Sci. Eng., 2010, A527: 1243
[20] Zhu X Y, Liu X J, Zeng F, et al. Microstructure and nanoindentation hardness of Ag/Fe multilayers [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 110
[21] Etminanfar M R, Sohi M H. Corrosion resistance of multilayer coatings of nanolayered Cr/Ni electrodeposited from Cr(III)-Ni(II) bath [J]. Thin Solid Films, 2012, 520: 5322
[22] Fei J Y, Wilcox G D. Electrodeposition of zinc-nickel compositionally modulated multilayer coatings and their corrosion behaviours [J]. Surf. Coat. Technol., 2006, 200: 3533
[23] Luo L L, Li X, Fei J Y. Magnetic properties of Ni-Fe alloy coatings prepared by alloying Ni/Fe multilayer films [J]. Surf. Eng., 2015, 31: 679
[24] Luo L L, Fei J Y, Wang L, et al. Alloying of compositionally modulated Cu/Ni multilayer films and corrosion performance of Cu-Ni alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 523
[24] 骆立立, 费敬银, 王磊等. 组分调制Cu/Ni多层膜的合金化及其合金化镀层的耐蚀特性 [J]. 中国腐蚀与防护学报, 2014, 34: 523
[25] Ali J A, Ambrose J R. The relationship between copper component dissolution kinetics and the corrosion behaviour of Monel-400 alloy in de-aerated NaCl solutions [J]. Corros. Sci., 1992, 33: 1147
[26] Dong J H, Cao C N, Lin H C. The research of the effect of chloride ion on the mechanism of the corrosion of iron in dilute acidic solutions [J]. Acta Phys.-Chim. Sin., 1995, 11: 279
[26] 董俊华, 曹楚南, 林海潮. 稀酸溶液中氯离子对工业纯铁的腐蚀机理研究 [J]. 物理化学学报, 1995, 11: 279
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[4] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[5] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[6] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[7] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[8] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[9] 王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[10] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[11] 崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[12] 刘胤, 刘时美, 于鲁萍, 刘军, 姜伟. 镁合金的腐蚀与微弧氧化膜层研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 99-105.
[13] 骆立立, 费敬银, 王磊, 林西华, 王少兰. 组分调制Cu/Ni多层膜的合金化及其合金化镀层的耐蚀特性[J]. 中国腐蚀与防护学报, 2014, 34(6): 523-531.
[14] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[15] 李西娟, 李澄, 王加余, 张学德, 尹成勇, 郑顺丽, 徐云玲. 含疏水性液体微胶囊复合铜镀层的制备与性能研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 311-316.