Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 123-129    DOI: 10.11902/1005.4537.2018.050
  研究报告 本期目录 | 过刊浏览 |
钝性纯Ti在人工海水中的电化学活化行为研究
严少坤1,郑大江1,韦江1,宋光铃1(),周廉2
1. 厦门大学材料学院 厦门大学海洋材料腐蚀防护研究中心 厦门 361005
2. 南京工业大学先进金属材料研究院 南京 211800
Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater
Shaokun YAN1,Dajiang ZHENG1,Jiang WEI1,Guangling SONG1(),Lian ZHOU2
1. Center for Marine Materials Corrosion & Protection, College of Materials, Xiamen University, Xiamen 361005, China
2. Institute of Advanced Metallic Materials, Nanjing Tech University, Nanjing 211800, China
全文: PDF(8121 KB)   HTML
摘要: 

通过恒电位极化、电化学阻抗 (EIS) 和动电位扫描曲线,跟踪监测了TA2纯Ti在人工海水溶液中的电化学钝化与特定电位的活化过程,研究了不同海水成分对该过程的影响。结果表明,在1.6 V (SCE) 附近出现电流峰,有一定的活化过程。结合SEM和析氧监测结果对电流峰进行了分析,显示1.4~1.6 V (SCE) 电位范围内形成的膜层会出现明显缺陷,并且TA2表面没有气泡冒出。Mott?Schottky拟合结果显示,在出现电流峰的电位区间,钛表面膜的半导体性质发生了转变。

关键词 纯Ti钝化膜电化学测试海水成分    
Abstract

As one of the most corrosion resistant metallic material, Ti or its alloy may find a variety of applications in the marine industry. It is important to understand the passivation mechanism of Ti in seawater. In this paper, the activation process of a passivated pure titanium TA2 in artificial seawater was investigated by means of potentiostat polarization, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The influence of seawater composition on the activation behavior was also studied. The result showed that the activation occurred around 1.6 V (SCE). Scanning electron microscope (SEM) and oxygen evolution monitoring indicated that obvious defects emerged on the surface of TA2 but no bubble was detected by applied potentials in the range of 1.4~1.6 V (SCE). According to Mott?Schottky analysis of the passivated and activated TA2 surface, the activation might be attributed to a transition of the semiconducting performance of the surface film on TA2.

Key wordspure titanium    passive film    electrochemical measurement    seawater composition
收稿日期: 2018-04-17     
ZTFLH:  TG178  
基金资助:国家自然科学基金(51671163)
通讯作者: 宋光铃     E-mail: guangling.song@hotmail.com
Corresponding author: Guangling SONG     E-mail: guangling.song@hotmail.com
作者简介: 严少坤,男,1992年生,硕士生

引用本文:

严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
Shaokun YAN, Dajiang ZHENG, Jiang WEI, Guangling SONG, Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 123-129.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.050      或      https://www.jcscp.org/CN/Y2019/V39/I2/123

图1  TA2纯Ti在人工海水和含不同海水离子的NaCl溶液中的动电位扫描曲线
图2  TA2纯Ti在人工海水中不同恒电位下极化不同时间后的析氧照片
图3  TA2纯Ti在人工海水中不同恒电位下极化2 h后的监测电流密度
图4  TA2在人工海水溶液中不同极化电位极化5 h后的Nyquist图及放大图像
图5  TA2在人工海水中经过5 h极化后的等效电路图和电化学阻抗拟合值
图6  TA2抛光样品在人工海水中不同恒电位下极化2 h的SEM像
图7  依据Mott?Schottky模型在0.1~1.4 V和1.8~3.2 V范围内对EIS线性拟合结果 (三角形数据点不参与拟合)
[1] Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development [J]. Mater. Des., 2011, 32: 1684
[2] Williams J C, Starke E A Jr. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
[3] Flemming H C. Biofouling in water systems-cases, causes and countermeasures [J]. Appl. Microbiol. Biotechnol., 2002, 59: 629
[4] Gorynin I V. Titanium alloys for marine application [J]. Mater. Sci. Eng., 1999, A263: 112
[5] Been J, Faller K. Using Ti-5111 for marine fastener applications [J]. JOM, 1999, 51(6): 21
[6] Wake H, Takahashi H, Takimoto T, et al. Development of an electrochemical antifouling system for seawater cooling pipelines of power plants using titanium [J]. Biotechnol. Bioeng., 2006, 95: 468
[7] Wang G F. Development of anti-corrosion and fouling of seawater pipe system of marine ship [J]. Dev. Appl. Mater., 2016, 31(4): 108
[7] 王广夫. 舰船海水管路系统防腐防污技术进展 [J]. 材料开发与应用, 2016, 31(4): 108)
[8] Delplancke J L, Garnier A, Massiani Y, et al. Influence of the anodizing procedure on the structure and the properties of titanium oxide films and its effect on copper nucleation [J]. Electrochim. Acta, 1994, 39: 1281
[9] Sun L D, Zhang S, Sun X W, et al. Effect of electric field strength on the length of anodized titania nanotube arrays [J]. J. Electroanal. Chem., 2009, 637: 6
[10] Carley A F, Chalker P R, Riviere J C, et al. The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra [J]. J. Chem. Soc., Faraday Trans., 1987, 83: 351
[11] Fushimi K, Okawa T, Azumi K, et al. Heterogeneous growth of anodic oxide film on a polycrystalline titanium electrode observed with a scanning electrochemical microscope [J]. J. Electrochem. Soc., 2000, 147: 524
[12] Schmidt A M, Azambuja D S, Martini E M A. Semiconductive properties of titanium anodic oxide films in McIlvaine buffer solution [J]. Corros. Sci., 2006, 48: 2901
[13] Aladjem A. Anodic oxidation of titanium and its alloys [J]. J. Mater. Sci., 1973, 8: 688
[14] Tanaka S, Fukushima Y, Nakamura I, et al. Preparation and characterization of microporous layers on titanium by anodization in sulfuric acid with and without hydrogen charging [J]. ACS Appl. Mater. Interfaces, 2013, 5: 3340
[15] Souza M E P, Ballester M, Freire C M A. EIS characterisation of Ti anodic oxide porous films formed using modulated potential [J]. Surf. Coat. Technol., 2007, 201: 7775
[16] Zheng J Y. Influence of marine biofouling on corrosion behaviour [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 171
[16] 郑纪勇. 海洋生物污损与材料腐蚀 [J]. 中国腐蚀与防护学报, 2010, 30: 171
[17] Nakagawa M, Matsuya S, Shiraishi T, et al. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use [J]. J. Dent. Res., 1999, 78: 1568
[18] Zhan Y Y, Hu W B, Zhang W J, et al. The impact of CO2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius [J]. Mar. Pollut. Bull., 2016, 112: 291
[19] Spalding C, Finnegan S, Fischer W W. Energetic costs of calcification under ocean acidification [J]. Global Biogeochem. Cycle., 2017, 31: 866
[20] Liao J S, Fukui H, Urakami T, et al. Effect of biofilm on ennoblement and localized corrosion of stainless steel in fresh dam-water [J]. Corros. Sci., 2010, 52: 1393
[21] Ouyang W Z, Xu C C. Studies on localized corrosion and desalination treatment of simulated cast iron artifacts [J]. Stud. Conserv., 2005, 50: 101
[22] Mansfeld F, Liu G, Xiao H, et al. The corrosion behavior of copper alloys, stainless steels and titanium in seawater [J]. Corros. Sci., 1994, 36: 2063
[23] Aragon E, Woillez J, Perice C, et al. Corrosion resistant material selection for the manufacturing of marine diesel exhausts scrubbers [J]. Mater. Des., 2009, 30: 1548
[24] Cai Z, Nakajima H, Woldu M, et al. In vitro corrosion resistance of titanium made using different fabrication methods [J]. Biomaterials, 1999, 20: 183
[25] Basame S B, White H S. Pitting corrosion of titanium. The relationship between pitting potential and competitive anion adsorption at the oxide film/electrolyte interface [J]. J. Electrochem. Soc., 2000, 147: 1376
[26] Rahim M A A, Khalil W. An approach to the effect of hydrogen loading on the anodic behaviour of Ti in NaOH solutions [J]. Materialwiss. Werkstofftech., 1999, 30: 487
[27] Boddy P J. Oxygen evolution on semiconducting TiO2 [J]. J. Electrochem. Soc., 1968, 115: 199
[28] Da Fonseca C, Boudin S, da Cunha Belo M. Characterisation of titanium passivation films by in situ AC impedance measurements and XPS analysis [J]. J. Electroanal. Chem., 1994, 379: 173
[29] Lin Y H, Du R G, Hu R G, et al. A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel [J]. Acta Phys.-Chim. Sin., 2005, 21: 740
[29] 林玉华, 杜荣归, 胡融刚等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, 21: 740
[30] Gnedenkov S V, Gordienko P S, Sinebrukhov S L, et al. Anticorrosion, antiscale coatings obtained on the surface of titanium alloys by microarc oxidation method and used in seawater [J]. Corrosion, 2000, 56: 24
[31] Xu J, Liu L L, Lu X L, et al. Effect of carbon doping on electrochemical behaviour of nanocrystalline Ti5Si3 film in NaCl solution [J]. Electrochem. Commun., 2011, 13: 102
[32] Jiang Z L, Dai X, Middleton H. Effect of silicon on corrosion resistance of Ti-Si alloys [J]. Mater. Sci. Eng., 2011, B176: 79
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[5] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[6] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[7] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[8] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[9] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[10] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[11] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[12] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[13] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[14] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[15] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.