Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 152-159    DOI: 10.11902/1005.4537.2018.040
  研究报告 本期目录 | 过刊浏览 |
阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响
达波,余红发(),麻海燕,吴彰钰
南京航空航天大学土木工程系 南京 210016
Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete
Bo DA,Hongfa YU(),Haiyan MA,Zhangyu WU
Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(3225 KB)   HTML
摘要: 

采用线性极化电阻法 (LPR) 和电化学阻抗谱法 (EIS),系统研究了暴露时间、阻锈剂种类及掺入方式对全珊瑚海水混凝土 (CASC) 中钢筋腐蚀的影响。结果表明:随着暴露时间的延长,不掺及同掺阻锈剂的普通钢筋自腐蚀电位 (Ecorr)、极化电阻 (Rp) 和电荷转移电阻 (Rct) 均逐渐降低;而暴露90 d后,预吸阻锈剂的普通钢筋EcorrRpRct均有增长的趋势,说明以预吸掺入的阻锈剂,不断地由珊瑚骨料向外释放,使得混凝土中有效的阻锈成分不断补充,一定程度上增大了Cl-通过混凝土传到钢筋表面的阻力,延缓了钢筋的锈蚀。此外,无论是掺入亚硝酸钙阻锈剂 (CN) 还是氨基醇类阻锈剂 (AA),对普通钢筋抵抗锈蚀的能力均有不同程度的提高,且随着暴露时间的延长,CN阻锈效果的衰减速率高于AA的。因此,对于海洋岛礁工程中的CASC结构,建议以预吸的方式掺入AA,有利于减弱钢筋对Cl-腐蚀的敏感性,提高CASC抗Cl-扩散渗透能力,从而延缓钢筋开始腐蚀时间,降低锈蚀的速率,达到延长CASC结构服役寿命的目的。

关键词 全珊瑚海水混凝土钢筋锈蚀线性极化电阻法电化学阻抗谱法阻锈剂掺入方式    
Abstract

The effect of inhibitors on corrosion behavior of reinforced bar in coral aggregate seawater concrete (CASC) in artificial sea water was studied by means of linear polarization resistance method (LPR) and electrochemical impedance spectroscopy (EIS). Two inhibitors, calcium nitrite rust inhibitor (CN) and amino-alcohol rust inhibitor (AA) are concerned, while two ways are adopted for mixing inhibitor into the concrete, namely, the inhibitor was directly dissolved into the seawater (ordinary way) and absorbed onto the coral aggregate (pre-absorbed way). The results show that for CASC concretes without and with inhibitor added via ordinary way, Ecorr, Rp and Rct decreased with the extension of the exposure time, but for those with the pre-absorbed inhibitor, Ecorr, Rp and Rct has a grown trend when exposure for 90 d, demonstrating that the pre-absorbed inhibitor onto the aggregate would gradually and continuously be released into the concrete to increase its barrier effect to the migration of harmful Cl-, therewith to alleviate the corrosion of the reinforced bar. Besides, the addition of CN or AA could enhance the corrosion resistance of the reinforcement bar, however the degradation rate of anticorrosion effectiveness of CN was higher than that of AA. Therefore, for marine engineering structures made of CASC on islands and reefs, it was suggested to adopt the pre-absorbed AA, which could prolong the time for the corrosion initiation of reinforced bar, reduce the corrosion rate and prolong the service life of the CASC structures.

Key wordscoral aggregate seawater concrete    reinforced bar corrosion    linear polarization resistance method    electrochemical impedance spectroscopy method    inhibitor    adding mode
收稿日期: 2018-04-01     
ZTFLH:  TU528  
基金资助:国家自然科学基金(51508272);国家自然科学基金(51678304);国家自然科学基金(51878350);国家自然科学基金(11832013);江苏省自然科学基金(BK20180433);中国博士后科学基金(2018M630558)
通讯作者: 余红发     E-mail: yuhongfa@nuaa.edu.cn
Corresponding author: Hongfa YU     E-mail: yuhongfa@nuaa.edu.cn
作者简介: 第一达波,男,1988年生,博士

引用本文:

达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
Bo DA, Hongfa YU, Haiyan MA, Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 152-159.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.040      或      https://www.jcscp.org/CN/Y2019/V39/I2/152

Physical propertyCoralCoral sand
Apparent density / (kg·m-3)23002500
Bulk density / (kg·m-3)10001115
Cylindrical compressive strength / MPa5.2---
Cl- content / %0.0740.112
Fineness modulus---2.9
表1  珊瑚骨料的物理性质
No.Concrete strengthSteel typeSteel quantityInhibitorAdmixture method
CASC-1C50Common steel16N---
CASC-2163%CNTraditional addition
CASC-3163%CN (P)Pre-absorption
CASC-4162%AATraditional addition
CASC-5162%AA (P)Pre-absorption
表2  CASC试件编号
图1  CASC试块示意图
图2  CASC的电化学测试示意图
图3  阻锈剂种类及掺入方式对CASC中普通钢筋Ecorr的影响
图4  阻锈剂种类及掺入方式对CASC中普通钢筋线性极化曲线的影响
图5  阻锈剂种类及掺入方式对CASC中普通钢筋Rp的影响
图6  钢筋CASC梁中普通钢筋的表面腐蚀状态
图7  阻锈剂种类及掺入方式对CASC中普通钢筋电化学阻抗谱的影响
Exposuretime / dN2%AA2%AA (P)3%CN3%CN (P)
030.132.933.535.435.2
2829.430.435.031.633.2
9024.128.766.029.654.7
18019.228.273.523.468.8
表3  采用不同方法掺入不同种类阻锈剂的CASC中普通钢筋的Rct
[1] Arumugam R A, Ramamurthy K. Study of compressive strength characteristics of coral aggregate concrete [J]. Mag. Concr. Res., 1996, 48: 141
[2] Wang X Z. Study on engineering geological properties of coral reefs and feasibility of large project construction on Nansha Islands [D]. Wuhan:Institute of Rock and Soil Mechanics, The Chinese Academy of Sciences, 2008
[2] 王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究 [D]. 武汉: 中国科学院武汉岩土力学研究所, 2008
[3] Da B, Yu H F, Ma H Y, et al. Chloride diffusion study of coral concrete in a marine environment [J]. Constr. Build. Mater., 2016, 123: 47
[4] Song H W, Lee C H, Ann K Y. Factors influencing chloride transport in concrete structures exposed to marine environments [J]. Cem. Concr. Compos., 2008, 30: 113
[5] Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete-a review [J]. Cem. Concr. Res., 2009, 39: 1122
[6] Luciano J, Miltenberger M. Predicting chloride diffusion coefficients from concrete mixture proportions [J]. Mater. J., 1999, 96: 698
[7] Scholer C H. Examination and study of certain structures in the Pacific Ocean Area [R]. California: U. S. Naval Civil Engineering Laboratory, 1959
[8] Howdyshell P A. The use of coral as an aggregate for portland cement concrete structures [R]. Springfield: U. S. Army Construction Engineering Research Laboratory, 1974
[9] Tehada T, Funahashi M. Cathodic protection of building reinforcing steel [R]. Orlando: NACE International, 2005
[10] Wattanachai P, Otsuki N, Saito T, et al. A study on chloride ion diffusivity of porous aggregate concretes and improvement method [J]. Doboku Gakkai Ronbunshuu, 2009, 65E: 30
[11] Kakooei S, Akil H M, Dolati A, et al. The corrosion investigation of rebar embedded in the fibers reinforced concrete [J]. Constr. Build. Mater., 2012, 35: 564
[12] Kakooei S, Akil H M, Jamshidi M, et al. The effects of polypropylene fibers on the properties of reinforced concrete structures [J]. Constr. Build. Mater., 2012, 27: 73
[13] Wang F, Zha X X. Experimental and theoretical study on coral concrete filled steel tube [J]. J. Build. Struct., 2013, 34(S1): 288
[13] 王芳, 查晓雄. 钢管珊瑚混凝土试验和理论研究 [J]. 建筑结构学报, 2013, 34(S1): 288)
[14] Da B, Yu H F, Ma H Y, et al. Factors influencing durability of coral concrete structure in the South China Sea [J]. J. Chin. Ceram. Soc., 2016, 44: 253
[14] 达波, 余红发, 麻海燕等. 南海海域珊瑚混凝土结构的耐久性影响因素 [J]. 硅酸盐学报, 2016, 44: 253
[15] Da B, Yu H F, Ma H Y, et al. Surface free chloride concentration and apparent chloride diffusion coefficient of coral seawater concrete [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2016, 46: 1093
[15] 达波, 余红发, 麻海燕等. 全珊瑚海水混凝土的表面自由氯离子浓度和表观氯离子扩散系数 [J]. 东南大学学报 (自然科学版), 2016, 46: 1093
[16] Luo H, Dong C F, Li X G, et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride [J]. Electrochim. Acta, 2012, 64: 211
[17] Alsabagh A M, Elsabee M Z, Moustafa Y M, et al. Corrosion inhibition efficiency of some hydrophobically modified chitosan surfactants in relation to their surface active properties [J]. Egypt.J. Pet., 2014, 23: 349
[18] Shabani-Nooshabadi M, Ghandchi M S. Santolina chamaecyparissus extract as a natural source inhibitor for 304 stainless steel corrosion in 3.5%NaCl [J]. J. Ind. Eng. Chem., 2015, 31: 231
[19] Millard S G, Gowers K R, Gill J S. Reinforcement corrosion assessment using linear polarisation techniques [J]. ACI Spec. Publ., 1991, 128: 373
[20] Da B, Yu H F, Ma H Y, et al. Experimental investigation of whole stress-strain curves of coral concrete [J]. Constr. Build. Mater., 2016, 122: 81
[21] Xu C. Electrochemical characterization and related inspection and monitoring technology of reinforcement corrosion in concrete structure [D]. Hangzhou: Zhejiang University, 2012
[21] 许晨. 混凝土结构钢筋锈蚀电化学表征与相关检监测技术 [D]. 杭州: 浙江大学, 2012
[22] He H Z, Cui Y L, Shi M L, et al. Real time monitoring of corrosion of rebar in concrete [J]. J. Build. Mater., 2013, 16: 50
[22] 贺鸿珠, 崔玉理, 史美伦等. 混凝土中钢筋锈蚀的实时监测 [J]. 建筑材料学报, 2013, 16: 50
[23] Cao Z L, Xiao P, Hibino M. Application research review on nitrite-based corrosion inhibitors [J]. Concrete, 2011, (10): 49
[23] 曹忠露, 肖鹏, 日比野诚. 亚硝酸钙阻锈剂的应用研究综述 [J]. 混凝土, 2011, (10): 49)
[24] Chen C C, Zhou W L, Liu J P. Efficiency of new organic corrosion inhibitor for rebar in concrete [J]. J. Build. Mater., 2011, 14: 136
[24] 陈翠翠, 周伟玲, 刘加平. 新型有机阻锈剂对钢筋的阻锈作用 [J]. 建筑材料学报, 2011, 14: 136
[1] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[2] 陈云翔, 冯丽娟, 蔡建宾, 王璇, 洪毅成, 林德源, 庄建煌, 杨怀玉. 新型复配阻锈剂在混凝土模拟液和试块中对钢筋锈蚀的抑制[J]. 中国腐蚀与防护学报, 2018, 38(4): 343-350.
[3] 周欣, 陈韧, 杨怀玉, 王福会. 糖苷对碱性溶液中钢筋表面钝化膜性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 125-130.
[4] 许晨 岳增国 金伟良. 电化学频率调制技术在混凝土钢筋锈蚀中的应用[J]. 中国腐蚀与防护学报, 2013, 33(2): 136-140.
[5] 蔡新华,徐世,尹世平,何真. 超高韧性水泥基复合材料与锈蚀钢筋粘结性能试验研究[J]. 中国腐蚀与防护学报, 2012, 32(3): 228-234.