Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 87-104    DOI: 10.11902/1005.4537.2018.036
  综合评述 本期目录 | 过刊浏览 |
微弧氧化及其在镁合金腐蚀防护领域的研究进展
崔学军(), 平静
四川理工学院材料科学与工程学院 自贡 643000
Research Progress of Microarc Oxidation for Corrosion Prevention of Mg-alloys
Xuejun CUI(), Jing PING
School of Materials Science and Engineering, Sichuan University of Science and Engineering,Zigong 643000, China
全文: PDF(7843 KB)   HTML
摘要: 

简要综述了微弧氧化 (MAO) 及其火花放电机理研究的发展历程。重点根据近年来MAO在镁合金腐蚀防护领域的研究结果,详细综述了电源特性、工作模式、电参数、电解液、后处理、前处理等MAO工艺的进展情况,并指出了今后的发展趋势。同时,也提出了MAO技术在镁合金表面防护领域研究所存在的问题和建议。

关键词 镁合金涂层微弧氧化耐蚀性氧化工艺    
Abstract

This paper reviewed the development history of microarc oxidation (MAO) technique and the mechanism related with spark discharge process, with emphasis on the corrosion prevention for Mg-alloys in the past two decades. Various aspects of MAO coating of Mg-alloys and recent progress were summarized in detail, such as power types, operating modes, electrical parameters, electrolyte solutions, post- and pre-treatments. And the problems and suggestions of MAO technique for corrosion prevention of magnesium alloys were presented in the end.

Key wordsmagnesium alloy    coating    plasma electrolytic oxidation    corrosion resistance    oxidation process
收稿日期: 2018-02-12     
基金资助:四川省科技支撑计划 (2016JZ0032) 和四川理工学院人才引进基金 (2017RCL15)
作者简介:

作者简介 崔学军,男,1978年生,博士

引用本文:

崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.
Xuejun CUI, Jing PING. Research Progress of Microarc Oxidation for Corrosion Prevention of Mg-alloys. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 87-104.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.036      或      https://www.jcscp.org/CN/Y2018/V38/I2/87

图1  MAO发展历程示意图
图2  MAO过程电流-电压关系示意图[2,34]
图3  恒压、恒流和恒功率模式所得MAO膜表面和截面形貌[53]
图4  不同脉冲频率下所得MAO膜的表面形貌[68]
Specie Additive Concentration Basesolution Substrate Effect
Restraining sparking Thickness Hardness Roughness Anticorrosion Ref.
Organic amine Diethylenetriamine 0.5 mol/L PO43- AZ91D Yes Un In Un In [93,94]
Triethylamine 40~60 g/L PO43- AZ91D Yes Un In Un In [93,95]
Hexamethylenetetramine 0.1 mol/L SiO32--PO43- AZ91D Yes Un In Un In [76]
N,N,N',N'-Tetramethylethy-lenediamine 0.1 mol/L SiO32--PO43- AZ91D Yes Un Un De In [96]
Triethanolamine 30 g/L SiO32--B4O72- AZ91D Yes Un Un De In [97]
Organic acid Aminoacetic acid 6.0 g/L SiO32--B4O72- Mg-Li Yes In Un De In [98]
Terephthalic acid 2.0 g/L B4O72- AZ91D Yes De Un De In [99]
Phytic acid 8.0 g/L OH- AZ91HP Yes Un Un Un In [100]
Tannic acid 4.0 g/L SiO32- AZ91 Yes In Un Un In [101]
EDTA 0.03 mol/L SiO32- AZ31 Yes In Un Un In [102]
Citric Acid 12 g/L SiO32- AZ31 Yes Un Un De In [103]
Nitrilotriacetic acid 0.04 mol/L SiO32- AZ31 Yes In Un De In [104]
Salt of organic Sodium of polyaspartic acid 19.2~28.8 g/L SiO32- AZ31 Yes Un Un De In [105]
acid Trisodium citrate 10 g/L SiO32--B4O72- ZK60 Yes De Un Un In [106]
Ferric citrate 15 g/L PO43- AZ40M Un In Un Un In [107]
Sodium citrate 0.5 g/L SiO32- AZ31B Yes De Un De De [108]
EDTA-2Na 1 g/L SiO32- AZ31B Yes De Un De De [108]
L-Ornithine acetate 0.03 mol/L SiO32- AZ31 Yes In Un Un In [92]
Potassium biphthalate 4 g/L B4O72- AZ91D Yes De Un De In [109]
Alcohols Glycerine 4 mL/L SiO32- AZ91D Yes De Un De In [110]
Ethylene glycol 10 g/L SiO32--B4O72- AZ31B Yes In Un De In [111]
Organic Glucose 10 g/L SiO32- AZ31B Yes In Un De In [112]
sugars Sucrose 10 g/L SiO32- AZ31B Yes Un Un De In [113]
Aromatic 1H-Benzotriazole 5 g/L SiO32- AZ31B Yes In Un De In [114]
compounds 8-Hydroxyquinoline 2 g/L SiO32- AZ91 Yes In Un Un In [115]
Siloxane KH-550 4~7 mL/L SiO32- AZ31B Yes In Un De In [116]
Organic Polytetra- 18 g/L PO43- AM60 No De Un Un In [117]
fluorine fluoroethylene MA8 [118]
表1  有机添加种类、用量及作用[93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118]
Additive Concentration Base solution Substrate Effect Ref.
Restraining sparking Thickness Hardness Roughness Anticorrosion
H2O2 10~20 ml/L SiO32- ZK60 Yes In Un In De [119]
NaF 0.2 mol/L PO43- AZ91 No In Un Un In [120]
K4P2O7 3 g/L SiO32- AZ31 No De Un In In [121]
Cu3(PO4)2 3~5 g/L SiO32~PO43- LZ91 Mg-Li Un In Un In De [122]
KMnO4 0.07 mol/L SiO32- AZ91 No De Un In In [123]
K2CrO4 0.4 g/L SiO32- AZ91D Un In Un In In [124]
NH4VO3 40 g/L SiO32--B4O72- AZ31B Yes Un Un De In [125]
K2ZrF6 10 g/L ZrF62--PO43- AM30 No De Un Un In [126]
K2TiF6 10 g/L PO3- Mg-8.5Li-1Al Un In Un Un In [127]
Na2WO4 10 g/L AlO22- AZ31 No In Un In In [128]
La(NO3)3 0.3 g/L PO43- AZ31 No De Un Un In [129]
Na2B4O7 9 g/L SiO32- AZ31B Yes In Un In In [130]
Na2B4O7 20 g/L OH- AZ91HP Yes In Un In De [131]
Nano-CeO2 6 g/L SiO32- AZ91D Un In In Un In [132]
Nano-TiO2 5 g/L AlO22--PO43- AZ91D Un Un De Un In [133,137]
Nano-SiO2 10 g/L SiO32- AZ31B Un In Un Un In [134]
Nano-SiC 4 g/L SiO32--AlO22- AZ91D No In In Un In [135]
Nano-Al2O3 15 g/L SiO32- AZ31B Un In In Un In [136,137]
Nano-ZrO2 4 g/L SiO32-PO43--BO3 AM60B Un Un In Un In [137]
Nano-graphite 10 g/L SiO32- ZM5 Un In In Un Un [138]
Oxidized graphene 0.05 g/L PO43- AZ31 Un In Un In In [139]
TiN Particles 2 g/L PO43- AZ91D Un In In Un In [140]
Nano-TiN 3 g/L SiO32- MA8 Un In In In De [141]
Nano-Nd2O3 10 g/L SiO32- AZ91D No De Un Un De [142]
Nano-Y2O3 10 g/L SiO32- AZ91D Yes In Un Un In [142]
Nano-Si3N4 2~3 g/L PO43--AlO22- AZ31 No In In In In [143]
表2  无机添加种类、用量及作用[119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143]
图5  MAO改性前后的表面形貌及其表面接触角[151]
图6  铈盐封孔MAO膜的表面和截面形貌及其元素分布[155]
图7  镁合金自封孔微弧氧化膜的表面形貌[157,158]
图8  不同外加电场电压下膜层的表面形貌[160]
图9  一步和两步工艺制备的MAO膜的表面和截面形貌[162]
[1] Xue W B, Lai Y C, Deng Z W, et al.The properties of coating formed by microplasma oxidation on magnesium alloy[J]. Mater. Sci. Technol., 1997, 5(2): 89(薛文彬, 来永春, 邓志威等. 镁合金微等离子体氧化膜的特性[J]. 材料科学与工艺, 1997, 5(2): 89)
[2] Yerokhin A L, Nie X, Leyland A, et al.Plasma electrolysis for surface engineering[J]. Surf. Coat. Technol., 1999, 122: 73
[3] Zhang L, Zhang J Q, Chen C F, et al.Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications[J]. Corros. Sci., 2015, 91: 7
[4] Darband G B, Aliofkhazraei M, Hamghalam P, et al.Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications[J]. J. Magnes. Alloy., 2017, 5: 74
[5] Wang H B, Fang Z G, Jiang B L.Microarc Oxidation Technology and Its Applications in Sea Environments [M]. Beijing: National Defense Industry Press, 2010: 4(王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用 [M]. 北京: 国防工业出版社, 2010: 4)
[6] Sluginov N P. Electric discharges in water [J]. J. Russ. Phys. Chem. Soc., 1880, 12: 193
[7] Dunstan B G, Mcarthur S J.Process of protecting surfaces of aluminum or aluminum alloys [P]. US Pat, 1771910, 1930
[8] Jean F.Protecting magnesium and its alloys [P]. US Pat, 2196161, 1940
[9] Güntherschulze A, Betz H.Neue untersuchungen über die elektrolytische ventilwirkung: II. Die oxydschicht von Sb, Bi, W, Zr, Al, Zn, Mg[J]. Z. Phys., 1931, 37: 726
[10] Buzzard R W.Method of producing corrosion resistant coatings on magnesium [P]. US Pat, 2261960, 1941
[11] Buzzard R W.Bath for and electrolytic treatment of magnesium and magnesium alloys [P]. US Pat, 2414090, 1947
[12] Rakoch A G, Bardin I V.Microarc oxidation of light alloys[J]. Metallurgist, 2010, 54: 378
[13] Rakoch A G, Bardin I V, Kovalev V L, et al.Microarc oxidation of light constructional alloys: Part 1. Main notions on the microarc oxidation of light constructional alloys[J]. Russ. J. Non-Ferr. Met., 2013, 54: 341
[14] McNeill W. The preparation of cadmium niobate by an anodic spark reaction[J]. J. Electrochem. Soc., 1958, 105: 544
[15] Gruss L L, McNeil W. Anodic spark reaction products in aluminate, tungstate, and silicate solutions[J]. Electrochem. Technol., 1963, 1: 283
[16] McNeil W, Gruss L L. Anodic film growth by anion deposition in aluminate, tungstate, and phosphate solutions[J]. J. Electrochem. Soc., 1963, 110: 853
[17] McNeill W. The Cr-22 coating for magnesium[J]. Met. Finish., 1955, 53: 57
[18] Dow C C.Bath for and method of producing a corrosion resistant coating upon light metals [P]. GB Pat, 762195A, 1956
[19] Evangelides H A.Method of electrolytically coating magnesium and electrolyte therefor [P]. US Pat, 2723952, 1955
[20] Brown S D, Kuna K J, Van T B.Anodic spark deposition from aqueous solutions of NaAlO2 and Na2SiO3[J]. J. Am. Ceram. Soc., 1971, 54: 384
[21] Sis L B, Brown S D, Van T B, et al.Polymorphic phases in anodic-spark-deposited coatings of A12O3[J]. J. Am. Ceram. Soc., 1974, 57(2): 108
[22] Nikolaev A V, Markov G A, Pshchevitskii B I.A new phenomenon in electrolysis[J]. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1977, 5(12): 32
[23] Kurze P, Krysmann W, Schreckenbach J, et al.Coloured ANOF layers on aluminium[J]. Cryst. Res. Technol., 1987, 22(1): 53
[24] Fyedorov V A, Kan A G, Maksutov R P.Surface strengthening of oil & gas trade facilities by micro arc oxidation [A]. VNII-OENG[C]. Moscow: 1989
[25] Markov G A, Gizatulin B S, Rychazhkova I B.Method of electrolytic deposition of silicate coatings [P]. USSR Pat, 926083, 1982
[26] Snezhko L A, Rozenboim G B, Chernenko V I.Corrosion resistance of aluminum alloys with silicate coatings[J]. Prot. Met., 1981. 17(5): 501
[27] Kurze P, Krysmann W, Berger M, et al.Method for the preparation of decorative coating on metals [P]. US Pat, 4869789, 1989
[28] Yamada M, Mita I.Formation of eta-alumina by anodic oxidation of aluminum[J]. Chem. Lett., 1982, 11: 759
[29] Xue W B, Deng Z W, Lai Y, et al.Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy[J]. J. Am. Ceram. Soc, 1998, 81: 1365
[30] Lu X P, Mohedano M, Blawert C, et al.Plasma electrolytic oxidation coatings with particle additions-a review[J]. Surf. Coat. Technol., 2016, 307: 1165
[31] Yerokhin A L, Lyubimov V V, Ashitkov R V.Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys[J]. Ceram. Int., 1998, 24: 1
[32] Nie X, Leyland A, Song H W, et al. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys [J]. Surf. Coat. Technol., 1999, 116-119: 1055
[33] Gerasimov M V, Nikolaev V A, Shcherbakov A N.Microplasma oxidation of metals and alloys[J]. Metallurgist, 1994, 38: 179.
[34] Blawert C, Dietzel W, Ghali E, et al.Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments[J]. Adv. Eng. Mater., 2006, 8: 511
[35] Wood G C, Pearson C.Dielectric breakdown of anodic oxide films on valve metals[J]. Corros. Sci., 1967, 7: 119
[36] Vijh A K.Sparking voltages and side reactions during anodization of valve metals in terms of electron tunnelling[J]. Corros. Sci., 1971, 11: 411
[37] Ikonopisov S.Theory of electrical breakdown during formation of barrier anodic films[J]. Electrochim. Acta, 1977, 22: 1077
[38] Van T B, Brown S D, Wirtz G P.Mechanism of anodic spark deposition[J]. Am. Ceram. Soc. Bull., 1977, 56: 563
[39] Nikoiaev A V, Rykaiin N N, Borzhov A P.Energy balance of a high current hollow tungsten cathode[J]. Fiz Khim Obrab Mater., 1977, 2: 32
[40] Albella J M, Montero I, Martínez-Duart J M. Electron injection and avalanche during the anodic oxidation of tantalum[J]. J. Electrochem. Soc., 1984, 131: 1101
[41] Tang W X, Yan J K, Ni E X, et al.Mechanism and development trend of micro-arc oxidation[J]. Hot Work. Technol., 2016, 45(14): 6(唐婉霞, 严继康, 倪尔鑫等. 微弧氧化的机理及其发展趋势[J]. 热加工工艺, 2016, 45(14): 6)
[42] Krysmann W, Kurze P, Dittrich K H, et al.Process characteristics and parameters of anodic oxidation by spark discharge (ANOF)[J]. Cryst. Res. Technol., 1984, 19: 973
[43] Epelfeld A, Lyudin V, Dunkin O, et al.A discharge in the metal-oxide-electrolyte system during Microarc oxidation with alternating current[J]. Bull. Russ. Acad. Sci., Phys., 2000, 64: 610
[44] Yerokhin A L, Snizhko L O, Gurevina N L, et al.Discharge characterization in plasma electrolytic oxidation of aluminium[J]. J. Phys.: Appl. Phys., 2003, 36D: 2110
[45] Hussein R O, Nie X, Northwood D O, et al.Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process[J]. J. Phys.: Appl. Phys., 2010, 43D: 105203
[46] Wang L, Chen L, Yan Z C, et al.Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes[J]. Surf. Coat. Technol., 2010, 205: 1651
[47] Mi T, Jiang B, Liu Z, et al.Plasma formation mechanism of microarc oxidation[J]. Electrochim. Acta, 2014, 123: 369
[48] Pan M Q, Chi G X, Wei D B, et al.Current status of research and application of micro-arc oxidation of aluminum alloys and magnesium alloys in China[J]. Mater. Prot., 2010, 43(4): 10(潘明强, 迟关心, 韦东波等. 我国铝/镁合金微弧氧化技术的研究及应用现状[J]. 材料保护, 2010, 43(4): 10)
[49] Jin F Y, Chu P K, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes [J]. Mater. Sci. Eng., 2006, A435/436: 123
[50] Wang S Y, Xia Y P, Liu L, et al.Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte[J]. Ceram. Int., 2014, 40: 93
[51] Hussein R O, Northwood D O, Nie X.Processing-microstructure relationships in the plasma electrolytic oxidation (PEO) coating of a magnesium alloy[J]. Mater. Sci. Appl., 2014, 5: 124
[52] Jiang Y L, Yu Z X, Xia Q X, et al.Structure and corrosion resistance of PEO ceramic coatings on AZ91D Mg alloy under three kinds of power modes[J]. Int. J. Appl. Ceram. Technol., 2013, 10: E310
[53] Yao Z P, Wang D L, Xia Q X, et al.Effect of PEO power modes on structure and corrosion resistance of ceramic coatings on AZ91D Mg alloy[J]. Surf. Eng., 2012, 28: 96
[54] Yang R S, Wei J S, Cui X J.Structure and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloy prepared by constant power mode[J]. Mater. Prot., 2015, 48(12): 8(杨瑞嵩, 魏劲松, 崔学军. AZ91D镁合金恒功率微弧氧化膜的结构及耐蚀性能[J]. 材料保护, 2015, 48(12): 8)
[55] Gu Y H, Cai X J, Ning C Y, et al.Effects of voltage on the microstructure and corrosion performance of microarc oxidation coated AZ31 magnesium alloys[J]. China Surf. Eng., 2012, 25(6): 21(顾艳红, 蔡晓君, 宁成云等. 电压对AZ31镁合金微弧氧化涂层微观结构及腐蚀性能的影响[J]. 中国表面工程, 2012, 25(6): 21)
[56] Cui X J, Wang R, Wei J S, et al.Effect of electrical parameters on micromorphology and corrosion Resistance of micro-arc oxidation coating on AZ31B Mg alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 495(崔学军, 王荣, 魏劲松等. 电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34: 495)
[57] Zhang R F, Shan D Y, Chen R S, et al.Effects of electric parameters on properties of anodic coatings formed on magnesium alloys[J]. Mater. Chem. Phys., 2008, 107: 356
[58] Cui X J, Li X F, Li T, et al.Negative voltage on structure and corrosion resistance of micro-arc oxidation coating on AZ31B magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 137(崔学军, 李晓飞, 李特等. 负向电压对AZ31B镁合金表面微弧氧化膜结构和耐蚀性的影响[J]. 中国腐蚀与防护学报, 2016, 36: 137)
[59] Pan Y K, Wang D G, Chen C Z.Effect of negative voltage on the microstructure, degradability and in vitro bioactivity of microarc oxidized coatings on ZK60 magnesium alloy[J]. Mater. Lett., 2014, 119: 127
[60] Dong H R, Ma Y, Guo H X, et al.Characteristics of microstructure and corrosion resistance of micro arc coatings on magnesium alloy fabricated with different power loading processes[J]. Rare Met. Mater. Eng., 2017, 46: 1656(董海荣, 马颖, 郭惠霞等. 不同加压方式下镁合金微弧氧化膜结构及耐蚀性的变化规律[J]. 稀有金属材料与工程, 2017, 46: 1656)
[61] Lü W L, Ma Y, Chen T J, et al.Effects of increase extent of voltage on micro-arc oxidation coatings of AZ91D magnesium alloy[J]. Rare Met. Mater. Eng., 2009, 38: 1480(吕维玲, 马颖, 陈体军等. 加压幅度对AZ91D镁合金微弧氧化膜的影响[J]. 稀有金属材料与工程, 2009, 38: 1480)
[62] Lü W L, Ma Y, Chen T J, et al.Effects of interval of enhancive voltage on micro-arc oxidation coatings of magnesium alloy AZ91D[J]. Trans. China Weld. Inst., 2009, 30(8): 81(吕维玲, 马颖, 陈体军等. 加压时间间隔对AZ91D镁合金微弧氧化膜的影响 [J]. 焊接学报, 2009, 30(8): 81)
[63] Ezhilselvi V, Nithin J, Balaraju J N, et al.The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy[J]. Surf. Coat. Technol., 2016, 288: 221
[64] Srinivasan B P, Liang J, Blawert C, et al.Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy[J]. Appl. Surf. Sci., 2009, 255: 4212
[65] Yang G L, Lü X Y, Bai Y Z, et al.The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating[J]. J. Alloy. Compd., 2002, 345: 196
[66] Song X H, Lu J H, Yin X J, et al.The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy[J]. J. Magnes. Alloy., 2013, 1: 318
[67] Zou B, Lü G H, Zhang G L, et al.Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1500
[68] Su L W, Ge Y F.Effect of current pulse parameter on micro-arc oxidation process of magnesium alloys[J]. Heat Treat. Met., 2017, 42(8): 125(苏立武, 葛延峰. 脉冲电流参量对镁合金微弧氧化过程的影响[J]. 金属热处理, 2017, 42(8): 125)
[69] Dehnavi V, Luan B L, Shoesmith D W, et al.Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior[J]. Surf. Coat. Technol., 2013, 226: 100
[70] Ma Y, Zhan H, Ma Y Z, et al.Effects of electrical parameters on microstructure and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloys[J]. Chin. J. Nonferrous Met., 2010, 20: 1467(马颖, 詹华, 马跃洲等. 电参数对AZ91D镁合金微弧氧化膜层微观结构及耐蚀性的影响[J]. 中国有色金属学报, 2010, 20: 1467)
[71] Sun L, Lu S, Lü W G, et al.Performance of micro-arc oxidation coating prepared under steps duty ratio mode[J]. Mater. Prot., 2017, 50(2): 44(孙磊, 芦笙, 吕伟刚等. 阶段占空比模式下微弧氧化膜层的性能[J]. 材料保护, 2017, 50(2): 44)
[72] Liu Y, Wei Z L, Yang F W, et al.Effect of electrolyte constituents on properties of anodic coatings of magnesium alloys[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 255(刘妍, 卫中领, 杨富巍等. 电解液组成对镁合金阳极氧化膜性能的影响[J]. 中国腐蚀与防护学报, 2011, 31: 255)
[73] Chai L Y, Yu X, Yang Z H, et al.Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking[J]. Corros. Sci., 2008, 50: 3274
[74] Ghasemi A, Raja V S, Blawert C, et al.The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings[J]. Surf. Coat. Technol., 2010, 204: 1469
[75] Seyfoori A, Mirdamadi S, Khavandi A, et al.Biodegradation behavior of micro-arc oxidized AZ31 magnesium alloys formed in two different electrolytes[J]. Appl. Surf. Sci., 2012, 261: 92
[76] Bai A, Chen Z J.Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D[J]. Surf. Coat. Technol., 2009, 203: 1956
[77] Mori Y, Koshi A, Liao J S, et al.Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate-silicate mixture electrolytes[J]. Corros. Sci., 2014, 88: 254
[78] Salami B, Afshar A, Mazaheri A.The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body fluid[J]. J. Magnes. Alloy., 2014, 2: 72
[79] Jiang B L, Zhang X F.Growth rhythm and corrosion resistance of ceramic coatings formed by microarc oxidation on magnesium alloys in different conductivity solutions[J]. Rare Met. Mater. Eng., 2005, 34: 393(蒋百灵, 张先锋. 不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性[J]. 稀有金属材料与工程, 2005, 34: 393)
[80] Zhang L, Liang G, Jiang B L, et al.Effect of solute ions on plasma generation process and microstructure of microarc oxidation layer on AZ31B magnesium alloy[J]. J. Chin. Ceram. Soc., 2014, 42: 785(张龙, 梁戈, 蒋百灵等. 溶质离子对AZ31B镁合金微弧诱发过程和陶瓷层结构的影响 [J]. 硅酸盐学报, 2014, 42: 785)
[81] Yao L F, Chen T, Xu Y, et al.Effect of (NaPO3)6 concentration in electrolyte on corrosion resistance and hemolytic rate of MAO coatings on magnesium alloy[J]. Corros. Sci. Prot. Technol., 2016, 28: 39(姚力夫, 陈涛, 徐颖等. 电解液浓度对镁合金微弧氧化层耐蚀性与溶血率的影响[J]. 腐蚀科学与防护技术, 2016, 28: 39)
[82] Simchen F, Sieber M, Lampke T.Electrolyte influence on ignition of plasma electrolytic oxidation processes on light metals[J]. Surf. Coat. Technol., 2017, 315: 205
[83] Ono S, Moronuki S, Mori Y, et al.Effect of electrolyte concentration on the structure and corrosion resistance of anodic films formed on magnesium through plasma electrolytic oxidation[J]. Electrochim. Acta, 2017, 240: 415
[84] Yan F Y, Lin H, Ma Y, et al.Study on electrolyte conductivity of magnesium alloy micr-arc oxidization[J]. Light Alloy Fabricat. Technol., 2007, 35(5): 28(阎峰云, 林华, 马颖等. 镁合金微弧氧化电解液电导率的研究[J]. 轻合金加工技术, 2007, 35(5): 28)
[85] Dong K H, Song Y W, Shan D Y, et al.Research progress of micro-arc oxidation technology on magnesium alloys[J]. Surf. Technol., 2015, 44(3): 74(董凯辉, 宋影伟, 单大勇等. 镁合金微弧氧化技术的研究进展[J]. 表面技术, 2015, 44(3): 74)
[86] Ma Y Z, Ma F J, Chen M, et al.Effect of temperature of electrolyte on coating formation process of magnesium alloy with micro-arc oxidation[J]. J. Lanzhou Univ. Technol., 2008, 34(3): 25(马跃洲, 马凤杰, 陈明等. 电解液温度对镁合金微弧氧化成膜过程的影响[J]. 兰州理工大学学报, 2008, 34(3): 25)
[87] Hao J M, Li J X.Study on electrolyte failure process of micro-arc oxidation for AZ91D alloy[J]. Hot Work. Technol., 2015, 44(14): 241(郝建民, 李敬学. AZ91D镁合金微弧氧化电解液的失效过程研究[J]. 热加工工艺, 2015, 44(14): 241)
[88] Lu X P, Mohedano M, Blawert C, et al.Plasma electrolytic oxidation coatings with particle additions-a review[J]. Surf. Coat. Technol., 2016, 307: 1165
[89] Gou Y N, Zhi Y, Zhang D F, et al.Research progress on organic additives in the anodizing process of magnesium alloy[J]. J. Funct. Mater., 2015, 46: 23012(沟引宁, 直研, 张丁非等. 有机添加剂在镁合金阳极氧化中的研究进展[J]. 功能材料, 2015, 46: 23012)
[90] Chang L M, Tian L F, Liu W, et al.Research progress of additives in micro-arc oxidation of magnesium alloys[J]. Corros. Prot., 2013, 34: 718(常立民, 田利丰, 刘伟. 添加剂在镁合金微弧氧化中的研究进展[J]. 腐蚀与防护, 2013, 34: 718)
[91] Yang X W, Ma A B, Liu H, et al.Research progress of electrolytes for colored mmicro-arc oxidation coatings on magnesium alloys[J]. Mater. Prot., 2016, 49(12): 58(杨晓伟, 马爱斌, 刘欢等. 镁合金微弧氧化着色电解液的研究进展[J]. 材料保护, 2016, 49(12): 58)
[92] Gou Y N, Zhang D F, Yi D, et al.Effect of amino acid on the anodic oxidation of magnesium alloy and its mechanism[J]. Rare Met. Mater. Eng., 2017, 46: 1103(沟引宁, 张丁非, 易丹等. 氨基酸类有机添加剂对镁合金阳极氧化的影响及其作用机制研究[J]. 稀有金属材料与工程, 2017, 46: 1103)
[93] Luo S L, Zhang T, Zhou H H, et al.Effect of organic amine on anodizing of magnesium alloys[J]. Chin. J. Nonferrous Met., 2004, 14: 691(罗胜联, 张涛, 周海晖等. 有机胺对镁合金阳极氧化的影响[J]. 中国有色金属学报, 2004, 14: 691)
[94] Barton T F, Macculloch J A, Ross P N.Anodization of magnesium and magnesium based alloys [P]. US Pat, 6280598, 2001
[95] Asoh H, Ono S.Anodizing of magnesium in amine-ethylene glycol electrolyte[J]. Mater. Sci. Forum, 2003, 419: 957
[96] Bai A, Chen Z J.N, N, N', N'-tetramethylethylenediamine on anticorrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D[J]. Surf. Eng., 2011, 27: 790
[97] Ou A L, Yu G, Hu B N, et al.Effect of triethanolamine on anodizing process of magnesium alloys[J]. CIESC J., 2009, 60: 2118(欧爱良, 余刚, 胡波年等. 三乙醇胺在镁合金阳极氧化中的作用[J]. 化工学报, 2009, 60: 2118)
[98] Chang L M, Wang P, Liu C J.Effects of aminoacetic acid on Mg-Li alloy anodic film[J]. Electroplat. Poll. Contrl., 2010, 30(3): 26(常立民, 王鹏, 刘长江. 氨基乙酸对镁-锂合金阳极氧化膜的影响[J]. 电镀与环保, 2010, 30(3): 26)
[99] Liu Y, Wei Z L, Yang F W, et al.Anodizing of AZ91D magnesium alloy in borate-terephthalic acid electrolyte[J]. Acta Phys.-Chim. Sin., 2011, 27: 2385.
[100] Zhang R F, Zhang S F, Duo S W.Influence of phytic acid concentration on coating properties obtained by MAO treatment on magnesium alloys[J]. Appl. Surf. Sci., 2009, 255: 7893
[101] Zhang S F, Zhang R F, Li W K, et al.Effects of tannic acid on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloy[J]. Surf. Coat. Technol., 2012, 207: 170
[102] Gou Y N, Zhang D F, Guo X X, et al.Influence of ethylene diamine tetraacetic acid on properties of composite anodizing films on AZ31 magnesium alloy[J]. Trans. Mater. Heat Treat., 2014, 35(1): 169(沟引宁, 张丁非, 郭星星等. 乙二胺四乙酸对AZ31镁合金复合阳极氧化膜性能的影响[J]. 材料热处理学报, 2014, 35(1): 169)
[103] Xiong Z P, Si Y J, Zheng X W, et al.Influence of citric acid on properties of anodized film on AZ31 magnesium alloy[J]. Electroplat. Finish., 2014, 33: 1045(熊中平, 司玉军, 郑兴文等. 柠檬酸对AZ31镁合金阳极氧化膜性能的影响[J]. 电镀与涂饰, 2014, 33: 1045)
[104] Wang J, Wang Y, Guo X X.Effects of nitrilotriacetic acid on properties of composite anodizing films on Mg alloy[J]. Hot Work. Technol., 2015, 44(4): 197(王敬, 王勇, 郭星星. 氨三乙酸对镁合金复合阳极氧化膜的影响[J]. 热加工工艺, 2015, 44(4): 197)
[105] Liu Y P, Zhang D F, Chen C G, et al.Adsorption orientation of sodium of polyaspartic acid effect on anodic films formed on magnesium alloy[J]. Appl. Surf. Sci., 2011, 257: 7579
[106] Lu S, Xu R Y, Chen J, et al.Optimization of silicate electrolyte for micro-arc oxidation and characteristic of coating fabricated on ZK60 magnesium alloy[J]. Chin. J. Nonferrous Met., 2010, 20: 1868(芦笙, 徐荣远, 陈静等. ZK60镁合金微弧氧化硅酸盐电解液的优化及膜层特性[J]. 中国有色金属学报, 2010, 20: 1868)
[107] Feng L, Zhang L G, Li S Z, et al.Effect of ferric citrate on microstructure and corrosion resistance of micro-arc oxidation black film on Mg-alloy AZ40M[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 360(冯立, 张立功, 李思振等. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37: 360)
[108] Cui X J, Ping J, Dou B J, et al.Surface morphology and anti-corrosion of micro-arc oxidation coatings prepared in different additives[J]. China Surf. Eng., 2018, 31(2): 39(崔学军, 平静, 窦宝捷等. 几种添加剂作用的微弧氧化膜表面结构及防腐性能[J]. 中国表面工程, 2018, 31(2): 39)
[109] Liu Y, Yang F W, Wei Z L, et al.Anodizing of AZ91D magnesium alloy using environmental friendly alkaline borate-biphthalate electrolyte[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1778
[110] Wu D, Liu X D, Lu K, et al.Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface[J]. Appl. Surf. Sci., 2009, 255: 7115
[111] Zhu F, Wang J W, Li S H, et al.Preparation and characterization of anodic films on AZ31B Mg alloy formed in the silicate electrolytes with ethylene glycol oligomers as additives[J]. Appl. Surf. Sci., 2012, 258: 8985
[112] Tu X H, Chen L, Wu J Y.Effect of glucose on properties of anodizing film on AZ31B magnesium alloy[J]. Chin. J. Nonferrous Met., 2013, 23: 727(屠晓华, 陈利, 吴建一. 葡萄糖对镁合金阳极氧化膜性能的影响[J]. 中国有色金属学报, 2013, 23: 727)
[113] Tu X H, Chen L, Shen J F, et al.Effects of sucrose on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte[J]. Int. J. Electrochem. Sci., 2012, 7: 9573
[114] Guo X H, An M Z, Yang P X, et al.Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte[J]. J. Alloy. Compd., 2009, 482: 487
[115] Zhang R F, Zhang S F, Yang N, et al.Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys[J]. J. Alloy. Compd., 2012, 539: 249
[116] Cui X J, Dai X, Zheng B Y, et al.Effect of KH-550 content on structure and properties of a micro-arc oxidation coating on Mg-alloy AZ31B[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 227(崔学军, 代鑫, 郑冰玉等. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响[J]. 中国腐蚀与防护学报, 2017, 37: 227)
[117] Guo J, Wang L P, Wang S C, et al.Preparation and performance of a novel multifunctional plasma electrolytic oxidation composite coating formed on magnesium alloy[J]. J. Mater. Sci., 2009, 44: 1998
[118] Mashtalyar D V, Nadaraia K V, Sinebryukhov S L, et al.Protective composite coatings formed on Mg alloy surface by PEO using organofluorine materials[J]. J. Mater. Sci. Technol., 2017, 33: 661
[119] Pan Y K, Chen C Z, Wang D G, et al.Influence of additives on microstructure and property of microarc oxidized Mg-Si-O coatings[J]. Ceram. Int., 2012, 38: 5527
[120] Barchiche C E, Veys-Renaux D, Rocca E.A better understanding of PEO on Mg alloys by using a simple galvanostatic electrical regime in a KOH-KF-Na3PO4 electrolyte[J]. Surf. Coat. Technol., 2011, 205: 4243
[121] Zhuang J J, Song R X, Hu Q, et al.Effect of pyrophosphate in electrolyte on the ceramic coatings prepared by Micro-arc oxidation on AZ31 magnesium alloy[J]. Mater. Rev., 2016, 30: 526(庄俊杰, 宋若希, 胡强等. 焦磷酸盐对AZ31镁合金微弧氧化陶瓷膜层的影响[J]. 材料导报, 2016, 30: 526)
[122] Lee S J, Do L H T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy[J]. Surf. Coat. Technol., 2016, 307: 781
[123] Hwang D Y, Kim Y M, Park D Y, et al.Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation[J]. Electrochim. Acta, 2009, 54: 5479
[124] Ma Y, Liu N, Wang Y S, et al.Effect of chromate additive on corrosion resistance of MAO coatings on magnesium alloys[J]. J. Chin. Ceram. Soc., 2011, 39: 1493(马颖, 刘楠, 王宇顺等. 铬酸盐对镁合金微弧氧化膜耐蚀性的影响[J]. 硅酸盐学报, 2011, 39: 1493)
[125] Si Y J, Xiong Z P, Zheng X W, et al.Improving the anti-corrosion ability of anodization film of AZ31B magnesium alloy by addition of NH4VO3 in the electrolyte[J]. Int. J. Electrochem. Sci., 2016, 11: 3261
[126] Liu F, Shan D Y, Song Y W, et al.Effect of additives on the properties of plasma electrolytic oxidation coatings formed on AM50 magnesium alloy in electrolytes containing K2ZrF6[J]. Surf. Coat. Technol., 2011, 206: 455
[127] Song L, Kou Y, Song Y, et al.Fabrication and characterization of micro-arc oxidation (MAO) coatings on Mg-Li alloy in alkaline polyphosphate electrolytes without and with the addition of K2TiF6[J]. Mater. Corros., 2011, 62: 1124
[128] Tu W B, Cheng Y L, Zhan T Y, et al.Influence of sodium tungstate and sealing treatment on corrosion resistance of coatings formed on AZ31 magnesium alloy by plasma electrolytic oxidation[J]. Int. J. Electrochem. Sci., 2017, 12: 10863
[129] Toorani M, Aliofkhazraei M, Golabadi M, et al.Effect of lanthanum nitrate on the microstructure and electrochemical behavior of PEO coatings on AZ31 Mg alloy[J]. J. Alloy. Compd., 2017, 719: 242
[130] Shao W T, Jiang B L, Fang A C.Effects of sodium tetraborate in the electrolyte systems on micro-arc oxidation of magnesium alloy[J]. Rare Met. Mater. Eng., 2016, 45: 918(邵文婷, 蒋百灵, 房爱存. 镁合金微弧氧化体系中四硼酸钠的作用机理研究[J]. 稀有金属材料与工程, 2016, 45: 918)
[131] Zhang R F, Zhang S F, Shen Y L, et al.Influence of sodium borate concentration on properties of anodic coatings obtained by micro arc oxidation on magnesium alloys[J]. Appl. Surf. Sci., 2012, 258: 6602
[132] Rehman Z U, Uzair M, Lim H T, et al.Structural and electrochemical properties of the catalytic CeO2 nanoparticles-based PEO ceramic coatings on AZ91 Mg alloy[J]. J. Alloy. Compd., 2017, 726: 284
[133] Yang X F, Tian L H, Cao S, et al.The influence of nanometer TiO2 doping on AZ91D magnesium alloy micro-arc oxidation membrane morphology[J]. Mater. Mech. Eng., 2013, 37(10): 79(杨晓飞, 田林海, 曹盛等. 纳米TiO2掺杂对AZ91D镁合金微弧氧化膜形貌及性能的影响[J]. 机械工程材料, 2013, 37(10): 79)
[134] Liu D J, Jiang B L, Liu Z, et al.Effect of nanosilica additive on microstructure and corrosion resistance of micro-arc oxidation of magnesium alloy[J]. J. Mater. Prot., 2013, 46(7): 8(刘东杰, 蒋百灵, 刘政等. 纳米SiO2添加剂对镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料保护, 2013, 46(7): 8)
[135] Wang S Y, Si N C, Xia Y P, et al.Influence of nano-SiC on microstructure and property of MAO coating formed on AZ91D magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1926
[136] Cui X J, Yang R S, Li M T, et al.Structure and properties of a micro-arc oxidation coating coupled with Nano-Al2O3 particles on AZ31B magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 73(崔学军, 杨瑞嵩, 李明田. 纳米Al2O3掺杂AZ31B镁合金表面微弧氧化膜的结构与性能[J]. 中国腐蚀与防护学报, 2016, 36: 73)
[137] Mandelli A, Bestetti M, Da Forno A, et al.A composite coating for corrosion protection of AM60B magnesium alloy[J]. Surf. Coat. Technol., 2011, 205: 4459
[138] Yang Z C, Wu X Q, Xie F Q, et al.Tribological properties of MAO coating with Nano-graphite on ZM5 magnesium alloy[J]. China Surf. Eng., 2013, 26(2): 45(杨志成, 吴向清, 谢发勤等. 纳米石墨改性ZM5镁合金微弧氧化陶瓷层摩擦磨损性能[J]. 中国表面工程, 2013, 26(2): 45)
[139] Wen C L, Zhan X Z, Huang X G, et al.Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method[J]. Surf. Coat. Technol., 2017, 317: 125
[140] Zhang R Z, Jia X J, Tang M Q, et al.Effect of TiN particles on micro-arc oxidation process and film properties of magnesium alloy[J]. Surf. Technol., 2017, 46(9): 81(张瑞珠, 贾新杰, 唐明奇等. TiN颗粒对镁合金微弧氧化过程及膜层性能的影响[J]. 表面技术, 2017, 46(9): 81)
[141] Mashtalyar D V, Gnedenkov S V, Sinebryukhov S L, et al.Plasma electrolytic oxidation of the magnesium alloy MA8 in electrolytes containing TiN nanoparticles[J]. J. Mater. Sci. Technol., 2017, 33: 461
[142] Ouyang K N.Influence of rare-earth oxide particles on the corrosion resistance of ceramic coatings produced on AZ91D magnesium alloy by micro-arc oxidation [D]. Beijing: Beijing University of Chemical Technology, 2015(欧阳珂宁. 稀土氧化物颗粒对AZ91D镁合金微弧氧化膜层耐蚀性能的影响 [D]. 北京: 北京化工大学, 2015)
[143] Lou B S, Lin Y Y, Tseng C M, et al.Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives[J]. Surf. Coat. Technol., 2017, 332: 358
[144] Zhang R F, Wang F Y, Hu C Y, et al.Research progress in sealing treatment of anodic coatings formed on magnesium alloys[J]. J. Mater. Eng., 2007, (11): 82(张荣发, 王方圆, 胡长员等. 镁合金阳极氧化膜封孔处理的研究进展[J]. 材料工程, 2007, (11): 82)
[145] Li Y, Niu L Y, Gao G L, et al.Effect of processing parameters of microarc oxidation and sealing treatment on corrosion resistance of magnesium alloy[J]. Surf. Technol., 2008, 37(6): 14(李勇, 牛丽媛, 高光亮等. 微弧氧化工艺及封孔处理对镁合金耐蚀性能的影响[J]. 表面技术, 2008, 37(6): 14)
[146] Jiang B L, Zhang S F, Wu G J.The study of the corrosion resistance of the ceramic coatings formed by micro-arc oxidation on the Mg-base alloy[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 300(蒋百灵, 张淑芬, 吴国建. 镁合金微弧氧化陶瓷层耐蚀性的研究[J]. 中国腐蚀与防护学报, 2002, 22: 300)
[147] Kim S J, Kim J I, Okido M.Sealing effects of anodic oxide films formed on Mg-Al alloys[J]. Korean J. Chem. Eng., 2004, 21: 915
[148] Yuan B, Yuan S, Jiang B L, et al.Corrosion resistance of magnesium alloy with complex surface-modifying micro-arc oxidation coating and organic coating studied by neutral salt spraying[J]. Mater. Prot., 2006, 39(9): 15(袁兵, 袁森, 蒋百灵等. 镁合金微弧氧化及后续涂装耐盐雾腐蚀的研究[J]. 材料保护, 2006, 39(9): 15)
[149] Jiang D, Zhou H, Wan S, et al.Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly[J]. Surf. Coat. Technol., 2018, 339: 155
[150] Zhang C L, Zhang F, Song L, et al.Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy[J]. J. Alloy. Compd., 2017, 728: 815
[151] Cui X J, Lin X Z, Liu C H, et al.Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J]. Corros. Sci., 2015, 90: 402
[152] Cui X J, Yang R S, Liu C H, et al.Structure and corrosion resistance of modified micro-arc oxidation coating on AZ31B magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 814
[153] Cui L Y, Gao S D, Li P P, et al.Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31[J]. Corros. Sci., 2017, 118: 84
[154] Chen N N, Wang Y H, Zhong L, et al.Anticorrosion performance of super-Hydrophobic complex film of graphene/stearic acid on AZ91 Mg-alloy[J]. Chin. J. Mater. Res., 2017, 31: 751(陈宁宁, 王燕华, 钟莲等. 石墨烯/硬脂酸超疏水复合膜层的防腐性能[J]. 材料研究学报, 2017, 31: 751)
[155] Mohedano M, Blawert C, Zheludkevich M L.Cerium-based sealing of PEO coated AM50 magnesium alloy[J]. Surf. Coat. Technol., 2015, 269: 145
[156] Van Phuong N, Fazal B R, Moon S.Cerium-and phosphate-based sealing treatments of PEO coated AZ31 Mg alloy[J]. Surf. Coat. Technol., 2017, 309: 86
[157] Liu F, Shan D Y, Song Y W, et al.Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation[J]. Corros. Sci., 2011, 53(11): 3845
[158] Song Y W, Dong K H, Shan D Y, et al.Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy[J]. J. Magnes. Alloy., 2013, 1: 82
[159] Cui X J, Liu C H, Yang R S, et al.Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism[J]. Surf. Coat. Technol., 2015, 269: 228
[160] Chen H, Huang J, Chen Y N, et al.The research on microstructure and corrosion resistance of applied electricity with self-sealing and micro-arc oxidation coatings of AZ91D magnesium alloys[J]. Rare Met. Mater. Eng., 2017, 46: 3098(陈宏, 黄杰, 陈永楠等. AZ91D镁合金外加电场下自封孔微弧氧化膜层微观形貌及耐蚀性[J]. 稀有金属材料与工程, 2017, 46: 3098)
[161] Chen H, Huang J, Chen Y N, et al.Effect of secondary voltage on micro-arc oxidation sealing of AZ91D magnesium alloy[J]. Surf. Technol., 2017, 46(5): 12(陈宏, 黄杰, 陈永楠等. 二次电压对AZ91D镁合金微弧氧化封孔的影响[J]. 表面技术, 2017, 46(5): 12)
[162] Rehman Z U, Shin S H, Hussain I, et al.Structure and corrosion properties of the two-step PEO coatings formed on AZ91D Mg alloy in K2ZrF6-based electrolyte solution[J]. Surf. Coat. Technol., 2016, 307: 484
[163] Yang W, Ke P L, Fang Y, et al.Microstructure and properties of duplex (Ti:N)-DLC/MAO coating on magnesium alloy[J]. Appl. Surf. Sci., 2013, 270: 519
[164] Cui X J, Ping J, Zhang Y J, et al.Structure and properties of newly designed MAO/TiN coating on AZ31B Mg alloy[J]. Surf. Coat. Technol., 2017, 328: 319
[165] Lu X Y, Feng X G, Zuo Y, et al.Improvement of protection performance of Mg-rich epoxy coating on AZ91D magnesium alloy by DC anodic oxidation[J]. Prog. Org. Coat., 2017, 104: 188
[166] Fan X Z, Xu J Y, Wang Y, et al.Preparation and corrosion resistance of MAO layer/Yb2SiO5 composite coating on Mg alloy[J]. Surf. Coat. Technol., 2014, 240: 118
[167] Ezhilselvi V, Balaraju J N, Subramanian S.Chromate and HF free pretreatment for MAO/electroless nickel coating on AZ31B magnesium alloy[J]. Surf. Coat. Technol., 2017, 325: 270
[168] Zhao L B, Li Q N, Hong Y P, et al.Research status of micro-arc oxidation compound machining technology for aluminum and magnesium alloy[J]. Hot Work. Technol., 2016, 45(12): 15(赵隆滨, 黎清宁, 洪雅萍等. 铝、镁合金微弧氧化复合加工技术研究概况[J]. 热加工工艺, 2016, 45(12): 15)
[169] Wang X M, Zhu L Q, Liu H C, et al.Influence of surface pretreatment on the anodizing film of Mg alloy and the mechanism of the ultrasound during the pretreatment[J]. Surf. Coat. Technol., 2008, 202: 4210
[170] Krishna L R, Poshal G, Jyothirmayi A, et al.Compositionally modulated CGDS+MAO duplex coatings for corrosion protection of AZ91 magnesium alloy[J]. J. Alloy. Compd., 2013, 578: 355
[171] Cai J S, Cao F H, Chang L R, et al.The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film[J]. Appl. Surf. Sci., 2011, 257: 3804
[172] Hariprasad S, Gowtham S, Arun S, et al.Fabrication of duplex coatings on biodegradable AZ31 magnesium alloy by integrating cerium conversion (CC) and plasma electrolytic oxidation (PEO) processes[J]. J. Alloy. Compd., 2017, 722: 698
[173] Song D F, Qi W J, Long S Y, et al.Effects of pre-treatments on micro-arc oxidation film of die casting magnesium alloy[J]. Surf. Technol., 2012, 41(3): 5(宋东福, 戚文军, 龙思远等. 预处理对压铸镁合金微弧氧化膜的影响[J]. 表面技术, 2012, 41(3): 5)
[174] Gheytani M, Bagheri H R, Masiha H R, et al.Effect of SMAT preprocessing on MAO fabricated nanocomposite coating[J]. Surf. Eng., 2014, 30: 244
[175] Chen L L, Gu Y H, Liu L, et al.Effect of ultrasonic cold forging technology as the pretreatment on the corrosion resistance of MAO Ca/P coating on AZ31B Mg alloy[J]. J. Alloy. Compd., 2015, 635: 278
[176] Wang L Q, Zhou J S, Liang J, et al.Microstructure and corrosion behavior of plasma electrolytic oxidation coated magnesium alloy pre-treated by laser surface melting[J]. Surf. Coat. Technol., 2012, 206: 3109
[177] Wei F F, Zhang W, Zhang T, et al.Effect of variations of Al content on microstructure and corrosion resistance of PEO coatings on Mge-Al alloys[J]. J. Alloy. Compd., 2017, 690: 195
[178] Chen Y, Yang Y G, Zhang W, et al.Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy[J]. J. Alloy. Compd., 2017, 718: 92
[179] Huang H J, Wei X W, Yang J X, et al.Influence of surface micro grooving pretreatment on MAO process of aluminum alloy[J]. Appl. Surf. Sci., 2016, 389: 1175
[180] Li K, Li W F, Zhang G G, et al.Influence of surface etching pretreatment on PEO process of eutectic Al-Si alloy[J]. Chin. J. Chem. Eng., 2015, 23: 1572
[1] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[3] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[6] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[7] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[8] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[9] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[10] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[11] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[12] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[13] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[14] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[15] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.