Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (1): 1-8    DOI: 10.11902/1005.4537.2018.031
  综合评述 本期目录 | 过刊浏览 |
海水抽水蓄能电站的金属腐蚀和选材问题研究现状
杨丹1,2,李定林3,黄彦良1,4(),华丕龙3,赵霞1,4,彭鹏3,王秀通1,4
1. 中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071
2. 中国科学院大学 北京 100049
3. 南方电网调峰调频发电有限公司 广州 510635
4. 青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室 青岛 266237
Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant
Dan YANG1,2,Dinglin LI3,Yanliang HUANG1,4(),Pilong HUA3,Xia ZHAO1,4,Peng PENG3,Xiutong WANG1,4
1. CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. CSG Power Generation Co., Ltd., Guangzhou 510635, China
4. Open Studio for Marine Corrosion and Protection, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
全文: PDF(814 KB)   HTML
摘要: 

论述了海水抽水蓄能电站运行工况下各种环境因素对金属材料腐蚀的影响,介绍了金属材料在海洋环境中常见的腐蚀类型,对海洋环境中金属材料的腐蚀机理进行了分析。简要介绍了海水抽水蓄能电站主要结构在电站运行中可能会出现的腐蚀问题,阐述了适用于海水抽水蓄能电站的耐蚀材料及其在海洋环境中的耐腐蚀性能,研究和解决海水抽水蓄能电站结构的金属腐蚀和选材问题将是迫切需要开展的课题。

关键词 海水抽水蓄能电站材料腐蚀选材运行工况    
Abstract

The seawater pumped storage power plant uses seawater directly as the operational source. The relevant metallic materials were suffered from corrosion induced by high pressure and high speed seawater. Research on the corrosion mechanism and corrosion control of metallic structures and material selection for seawater pumped storage power plant is in urgent need. This article discusses the related marine environmental factors and their impact on the corrosion of metallic materials in service conditions of seawater pumped storage power plant. The common types of metal corrosion in the marine environment are introduced and the corrosion mechanisms of metal materials in the marine environment are analyzed. The possible corrosion problems encountered of the main structural workpieces during service of the seawater pumped storage power plant are briefly introduced. Finally, corrosion-resistant materials that can apply to seawater pumped storage power plant and their anticorrosion properties in marine environment are also described.

Key wordsseawater pumped storage power plant    metal corrosion    materials selection    operational condition
收稿日期: 2018-03-08     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2017YFB0903700);国家重点研发计划(2017YFB0903702)
通讯作者: 黄彦良     E-mail: hyl@qdio.ac.cn
Corresponding author: Yanliang HUANG     E-mail: hyl@qdio.ac.cn
作者简介: 杨丹,女,1995年生,硕士生

引用本文:

杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
Dan YANG, Dinglin LI, Yanliang HUANG, Pilong HUA, Xia ZHAO, Peng PENG, Xiutong WANG. Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 1-8.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.031      或      https://www.jcscp.org/CN/Y2019/V39/I1/1

[1] Pérez-Díaz J I, Chazarra M, García-González J, et al. Trends and challenges in the operation of pumped-storage hydropower plants [J]. Renew. Sust. Energ. Rev., 2015, 44: 767
[2] Punys P, Baublys R, Kasiulis E, et al. Assessment of renewable electricity generation by pumped storage power plants in EU Member States [J]. Renew. Sust. Energ. Rev., 2013, 26: 190
[3] Peng C D. Key technologies of seawater pumped storage power station [J]. Hydropower Pumped Storage, 2017, 5(3): 2
[3] 彭才德. 海水抽水蓄能电站关键技术 [J]. 水电与抽水蓄能, 2017, 5(3): 2
[4] Kong Y G, Kong Z G, Liu Z Q, et al. Pumped storage power stations in China: The past, the present, and the future [J]. Renew. Sust. Energ. Rev., 2017, 71: 720
[5] Chai J F, Xiao W. Seat water pumped storage station and the construction condition of China's coastline [J]. Hydropower Pumped Storage, 2016, 2(2): 46
[5] 柴建峰, 肖微. 海水抽水蓄能电站及我国工程建设条件浅析 [J]. 水电与抽水蓄能, 2016, 2(2): 46
[6] Zhou X Z, Xu Y J, Tan Y Q, et al. Development status and application prospects of small-scale pumped hydro energy storage technology [J]. Sino-Global Energy, 2017, 22(8): 87
[6] 周学志, 徐玉杰, 谭雅倩等. 小型抽水蓄能技术发展现状及应用前景 [J]. 中外能源, 2017, 22(8): 87
[7] Tan Y Q, Zhou X Z, Xu Y J, et al. Seawater pumped hydro energy storage: Review and perspectives [J]. Energy Storage Sci. Technol., 2017, 6: 35
[7] 谭雅倩, 周学志, 徐玉杰等. 海水抽水蓄能技术发展现状及应用前景 [J]. 储能科学与技术, 2017, 6: 35
[8] Hiratsuka A, Arai T, Yoshimura T. Seawater pumped-storage power plant in Okinawa island, Japan [J]. Eng. Geol., 1993, 35: 237
[9] Manfrida G, Secchi R. Seawater pumping as an electricity storage solution for photovoltaic energy systems [J]. Energy, 2014, 69: 470
[10] Fujihara T, Imano H, Oshima K. Development of pump turbine for seawater pumped-storage power plant [J]. Hitachi Rev., 1998, 47(5): 199
[11] Slocum A H, Fennell G E, Dundar G, et al. Ocean renewable energy storage (ORES) system: Analysis of an undersea energy storage concept [J]. Proc. IEEE, 2013, 101: 906
[12] McLean E, Kearney D. An evaluation of seawater pumped hydro storage for regulating the export of renewable energy to the national grid [J]. Energy Proced., 2014, 46: 152
[13] Ramos H M, Amaral M P, Covas D I C. Pumped-storage solution towards energy efficiency and sustainability: Portugal contribution and real case studies [J]. J. Water Resour. Prot., 2014, 6: 1099
[14] Katsaprakakis D A, Christakis D G, Pavlopoylos K, et al. Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos-Kasos [J]. Appl. Energy, 2012, 97: 38
[15] Katsaprakakis D A, Christakis D G, Stefanakis I, et al. Technical details regarding the design, the construction and the operation of seawater pumped storage systems [J]. Energy, 2013, 55: 619
[16] Rehman S, Al-Hadhrami L M, Alam M M. Pumped hydro energy storage system: A technological review [J]. Renew. Sust. Energ. Rev., 2015, 44: 586
[17] Kotiuga W, Hadjian S, King M, et al. Pre-feasibility study of a 1000 MW seawater pumped storage plant in Saudi Arabia [A]. Hydro vision International Conference [C]. Denver, Colorado, USA, 2013
[18] Ma T, Yang H X, Lu L, et al. Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization [J]. Appl. Energy, 2015, 137: 649
[19] Xiao W, Chai J F. Corrosion of metallic materials of pump-turbine for seat water pumped storage station [J]. Hydropower. Pumped Storage, 2017, 3(5): 32
[19] 肖微, 柴建峰. 海水抽水蓄能电站水泵水轮机金属材料腐蚀问题现状研究 [J]. 水电与抽水蓄能, 2017, 3(5): 32
[20] Jiang Z G, Wang H H, Gong L H. Analysis of leakage failure of a type 304 stainless steel tube [J]. Corros. Prot., 2017, 38: 160
[20] 蒋志国, 王辉煌, 龚利华. 某304不锈钢管道泄漏的失效分析 [J]. 腐蚀与防护, 2017, 38: 160
[21] Xie L X, Xie C X, Wang S C. Corrosion behavior of aluminum alloy in seawater [J]. Chem. Ind. Eng., 2015, 32(6): 47
[21] 解利昕, 谢呈香, 王世昌. 铝合金海水介质中腐蚀行为研究 [J]. 化学工业与工程, 2015, 32(6): 47
[22] Liao K X, Huang L J, Wang D D, et al. Corrosion behavior of X65 pipeline steel in simulated seawater environment [J]. Corros. Prot., 2017, 38: 856
[22] 廖柯熹, 黄琳钧, 王丹丹等. X65管线钢在模拟海水环境中的腐蚀行为 [J]. 腐蚀与防护, 2017, 38: 856
[23] Al-Juboori R A, Yusaf T. Biofouling in RO system: Mechanisms, monitoring and controlling [J]. Desalination, 2012, 302: 1
[24] Zheng J Y. Influence of marine biofouling on corrosion behavior [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 171
[24] 郑纪勇. 海洋生物污损与材料腐蚀 [J]. 中国腐蚀与防护学报, 2010, 30: 171
[25] Vazdirvanidis A, Pantazopoulos G, Rikos A. Corrosion investigation of stainless steel water pump components [J]. Eng. Failure Anal., 2017, 82: 466
[26] Li H B, Yang C T, Zhou E Z, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm [J]. J. Mater. Sci. Technol., 2017, 33: 1596
[27] Machuca L L, Bailey S I, Gubner R, et al. Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater [J]. Corros. Sci., 2013, 67: 242
[28] Zhang J, Zhang T, Shao Y W, et al. Crevice corrosion behavior of 5083 and 6061 aluminum alloys [J]. Corros. Sci. Prot. Technol., 2014, 26: 125
[28] 张晋, 张涛, 邵亚薇等. 5083和6061铝合金缝隙腐蚀行为的研究 [J]. 腐蚀科学与防护技术, 2014, 26: 125
[29] Al-Nabulsi K M, Al-Abbas F M, Rizk T Y, et al. Microbiologically assisted stress corrosion cracking in the presence of nitrate reducing bacteria [J]. Eng. Failure Anal., 2015, 58: 165
[30] Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment [J]. Int.
[30] J. Hydrog. Energy, 2017, 42: 27446
[31] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
[32] Wang X, Melchers R E. Corrosion of carbon steel in presence of mixed deposits under stagnant seawater conditions [J].
[32] J. Loss Prev. Process Ind., 2017, 45: 29
[33] Wang X, Melchers R E. Long-term under-deposit pitting corrosion of carbon steel pipes [J]. Ocean Eng., 2017, 133: 231
[34] Chatterjee U K, Raman R K S. Stress Corrosion Cracking (SCC) in Low and Medium Strength Carbon Steels [M]. Cambridge UK: Woodhead Publishing Limited, 2011: 169
[35] Gao R J, Du M. Marine Corrosion and Protection Technology [M]. Beijing: Chemical Industry Press, 2011
[35] 高荣杰, 杜敏. 海洋腐蚀与防护技术 [M]. 北京: 化学工业出版社, 2011
[36] Li H B, Jiang Z H, Yang Y, et al. Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels [J]. Int.
[36] J. Miner., Metall. Mater., 2009, 16: 517
[37] Blackwood D J, Lim C S, Teo S L M, et al. Macrofouling induced localized corrosion of stainless steel in Singapore seawater [J]. Corros. Sci., 2017, 129: 152
[38] Sidelle J, Pardal J M, Tavares S S M, et al. Premature failure of superduplex stainless steel pipe by pitting in sea water environment [J]. Eng. Fail. Anal., 2014, 46: 134
[39] Du X Q, Yang Q S, Chen Y, et al. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 570
[40] Jiang W, Zhao J P, Gong M, et al. Current situat-ion and prospects on titanium and its alloy in corrosion protection application [J]. Light Met., 2007, (9): 59
[40] 蒋伟, 赵金平, 龚敏. 钛及钛合金在防腐应用中的研究现状和前景 [J]. 轻金属, 2007, (9): 59
[41] Tal-Gutelmacher E, Eliezer D. Hydrogen cracking in titanium-based alloys [J].
[41] J. Alloy. Compd., 2005, 404-406: 621
[42] Huang G Q. Corrosion of copper alloys in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2005, 25(2): 65
[42] 黄桂桥. 铜合金在海洋飞溅区的腐蚀 [J]. 中国腐蚀与防护学报, 2005, 25(2): 65
[43] Li C, Zhang J L, Huang G Q, et al. Corrosion analyses of Aluminum brass tube heat exchanger in homemade equipment for seawater desalination [J]. Equip. Environ. Eng., 2014, 11(3): 105
[43] 李超, 张建丽, 黄桂桥等. 国产海水淡化装置铝黄铜换热管腐蚀调查分析 [J]. 装备环境工程, 2014, 11(3): 105
[44] Miou H J, Ding X F, Wang Y H. Failure analysis of copper alloy tube of air cooler under the sea [J]. Ship Boat, 2015, (2): 79
[44] 缪红建, 丁雪峰, 王永红. 海水介质下铜合金空冷器管失效原因分析 [J]. 船舶, 2015, (2): 79
[45] Zhang D Q, Yu Y Z, Liu J, et al. Failure analysis of the HAl77-2 alloy tube in low temperature multi-effect distillation installation [J]. J. Shanghai Univ. Elect. Power, 2017, 33: 167
[45] (张大全, 于印哲, 刘洁等. 低温多效海水淡化装置中HAl77-2铜管腐蚀失效分析 [J]. 上海电力学院学报, 2017, 33: 167
[46] Gibson A G, Arun S. Composite materials in the offshore industry [J]. Met. Mater., 1989, 5(10): 590
[47] Regourd M. Physico-chemical studies of cement pastes, mortars, and concretes exposed to sea water [J].
[47] Am J.. Concr. Inst. Spec. Publ., 1980, 65: 63
[48] Dong Z Q, Wu G, Xu B, et al. Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction [J]. Mater. Des., 2016, 92: 552
[49] Chang J, Zhang M, Fang M, et al. Corrosion behavior of TiAl/B4C composite material [J]. J. Synth. Cryst., 2014, 43: 2251
[49] 常杰, 张敏, 方明等. TiAl-B4C复合材料耐海水腐蚀性研究 [J]. 人工晶体学报, 2014, 43: 2251
[1] 徐雅欣, 曾潮流. 熔盐电堆的材料腐蚀[J]. 中国腐蚀与防护学报, 2014, 34(3): 211-217.
[2] 杨斌,檀傈锰,田勇,张利欣,金莹. 材料腐蚀数据共享平台构建方法研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 214-218.