Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (3): 274-282    DOI: 10.11902/1005.4537.2018.004
  研究报告 本期目录 | 过刊浏览 |
醇酸清漆保护性的电化学加速评价
桂琪, 郑大江, 宋光铃()
厦门大学材料学院 海洋材料腐蚀防护中心 厦门 361005
Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating
Qi GUI, Dajiang ZHENG, Guangling SONG()
Center for Marine Materials Corrosion & Protection, College of Materials, Xiamen University, Xiamen 361005, China
全文: PDF(4870 KB)   HTML
摘要: 

将目前一种电化学阻抗谱和负电位极化相结合的AC/DC/AC技术拓展成正电位阳极极化加速与电化学阻抗评价相结合的技术,并用醇酸清漆/碳钢体系验证了该技术确实能加速涂层/金属体系的腐蚀破坏、快速评价涂层的保护性,不仅适用于阴极保护条件下的涂层,也可用于自然腐蚀甚至被阳极极化的体系。通过实验分析了该技术测得的阻抗数据及样品表面形貌的变化,研究了其加速破坏的机理,建立了涂层加速破坏失效的物理模型。对比浸泡实验、AC/阴极DC/AC循环加速实验及AC/阳极DC/AC循环加速实验阻抗变化规律和腐蚀破坏形貌。结果表明:结合阴极极化和阳极极化将是未来获得一种既快速又合理的有机涂层性能评价技术的途径之一。

关键词 有机涂层电化学阻抗加速破坏阴极极化阳极极化    
Abstract

High corrosion resistant organic coatings are widely used for various industrial applications. These coatings normally have service life as long as tens of years. It is of great scientific interest and engineering significance to rapidly evaluate and compare the corrosion resistance of different long-life organic coatings. Different from the negative DC voltage used in the published AC/DC/AC (alternating current/direct current/alternating current) cyclic method to cathodically polarize an organic coating system before AC electrochemical impedance spectrum (EIS) in each cycle, a positive voltage was employed in this paper for the DC polarization in the AC/DC/AC cycling. The modified AC/DC/AC technique proved to be able to accelerate the damage of an alkyd varnish coating on carbon steel and thus quickly evaluate the coating corrosion resistance. Based on the measured impedance spectra and the recorded surface morphologic changes, the acceleration processes involved in the coating corrosion damage were analyzed, and a physical model for the accelerated failure of the coating/metal system was proposed. Based on the experiment results of electrochemical impedance spectroscopy and corrosion morphology from the immersion test, AC/cathodic DC/AC cyclic accelerated test, and AC/anodic DC/AC cyclic accelerated test, it shows that the evaluation method with the combination of cathodic and anodic polarization will be one of the effective and reasonable methods to evaluate the performance of organic coatings.

Key wordsorganic coating    electrochemical impedance spectroscopy    accelerated corrosion    cathodic polarization    anodic polarization
收稿日期: 2018-01-07     
ZTFLH:  TG174.46  
基金资助:国家重点研发计划 (2017YFB0702100)
作者简介:

作者简介 桂琪,男,1991年生,硕士生

引用本文:

桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 274-282.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.004      或      https://www.jcscp.org/CN/Y2018/V38/I3/274

图1  AC/DC/AC程序示意图
图2  试样浸泡实验中不同时期的阻抗变化及有机涂层/碳钢体系阻抗谱的等效电路
图3  试样浸泡过程中电化学参数随浸泡时间的变化
图4  试样浸泡实验前后的表面形貌及浸泡过程中涂层/金属体系破坏失效的物理模型
图5  有机涂层/金属样品在AC/阴极DC/AC加速破坏下的EIS谱和电流密度-时间曲线
图6  AC/阴极 DC/AC条件下的电化学参数随极化次数的变化
图7  有机涂层/金属样品在AC/阴极DC/AC条件下的表面形貌变化及阴极极化加速涂层/金属体系破坏失效的物理模型
图8  有机涂层/金属样品在AC/阳极DC/AC加速破坏下的EIS谱及其在第7次循环测试时的电流密度随时间的变化
图9  AC/阳极DC/AC条件下的电化学参数随极化次数的变化
图10  有机涂层/金属样品在AC/阳极 DC/AC条件下表面形貌的变化
图11  阳极极化加速涂层/金属体系破坏失效的物理模型
[1] Deflorian F, Fedrizzi L.Adhesion characterization of protective organic coatings by electrochemical impedance spectroscopy[J]. J. Adhes. Sci. Technol., 1999, 13: 629
[2] Grundmeier G, Schmidt W, Stratmann M.Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation[J]. Electrochim. Acta, 2000, 45: 2515
[3] Guillaumin V, Landolt D.Effect of dispersion agent on the degradation of a water borne paint on steel studied by scanning acoustic microscopy and impedance[J]. Corros. Sci., 2002, 44: 179
[4] García S J, Suay J.Anticorrosive properties of an epoxy-Meldrum acid cured system catalyzed by erbium III trifluromethanesulfonate[J]. Prog. Org. Coat., 2006, 57: 319
[5] Mao H Y, Wang K Z, Wang C X, et al.An improvement of color electrophoretic paint via ultrafine modified pigment paste[J]. J. Adhes. Sci. Technol., 2013, 28: 186
[6] Chinga G, Helle T.Structure characterisation of pigment coating layer on paper by scanning electron microscopy and image analysis[J]. Nord. Pulp Pap. Res. J., 2002, 17: 307
[7] Rajagopalan R, Iroh J O.Characterization of polyaniline-polypyrrole composite coatings on low carbon steel: A XPS and infrared spectroscopy study[J]. Appl. Surf. Sci., 2003, 218: 58
[8] Rahimi A, Amiri S.Anticorrosion hybrid nanocomposite coatings with encapsulated organic corrosion inhibitors[J]. J. Coat. Technol. Res., 2015, 12: 587
[9] Sekine I.Recent evaluation of corrosion protective paint films by electrochemical methods[J]. Prog. Org. Coat., 1997, 31: 73
[10] Rodríguez M T, Gracenea J J, Garcia S J, et al.Testing the influence of the plasticizers addition on the anticorrosive properties of an epoxy primer by means of electrochemical techniques[J]. Prog. Org. Coat., 2004, 50: 123
[11] García S J, Suay J.Optimization of deposition voltage of cataphoretic automotive primers assessed by EIS and AC/DC/AC[J]. Prog. Org. Coat., 2009, 66: 306
[12] Song G L, Liu M H.The effect of surface pretreatment on the corrosion performance of electroless E-coating coated AZ31[J]. Corros. Sci., 2012, 62: 61
[13] Bierwagen G P, He L, Li J, et al.Studies of a new accelerated evaluation method for coating corrosion resistance-thermal cycling testing[J]. Prog. Org. Coat., 2000, 39: 67
[14] Valentinelli L, Vogelsang J, Ochs H, et al.Evaluation of barrier coatings by cycling testing[J]. Prog. Org. Coat., 2002, 45: 405
[15] Miszczyk A, Darowicki K.Effect of environmental temperature variations on protective properties of organic coatings[J]. Prog. Org. Coat., 2003, 46: 49
[16] Song S, Song G L, Shen W, et al. Corrosion and electrochemical evaluation of coated magnesium alloys [J]. Corrosion, 2012, 68: 015005-1-11
[17] Allahar K N, Hinderliter B R, Bierwagen G P, et al.Cyclic wet drying of an epoxy coating using an ionic liquid[J]. Prog. Org. Coat., 2008, 62: 87
[18] Bierwagen G, Tallman D, Li J P, et al.EIS studies of coated metals in accelerated exposure[J]. Prog. Org. Coat., 2003, 46: 149
[19] Hollaender J.Rapid assessment of food/package interactions by electrochemical impedance spectroscopy (EIS)[J]. Food. Addit. Contam., 1997, 14: 617
[20] Suay J J, Rodríguez M T, Izquierdo R, et al.Rapid assessment of automotive epoxy primers by electrochemical techniques[J]. J. Coating. Technol., 2003, 75: 103
[21] García S J, Rodriguez M T, Izquierdo R, et al.Evaluation of cure temperature effects in cataphoretic automotive primers by electrochemical techniques[J]. Prog. Org. Coat., 2007, 60: 303
[22] García S J, Suay J.A comparative study between the results of different electrochemical techniques (EIS and AC/DC/AC) Application to the optimisation of the cataphoretic and curing parameters of a primer for the automotive industry[J]. Prog. Org. Coat., 2007, 59: 251
[23] Poelman M, Olivier M G, Gayarre N, et al.Electrochemical study of different ageing tests for the evaluation of a cataphoretic epoxy primer on aluminium[J]. Prog. Org. Coat., 2005, 54: 55
[24] Bethencourt M, Botana F J, Cano M J, et al.Lifetime prediction of waterborne acrylic paints with the AC-DC-AC method[J]. Prog. Org. Coat., 2004, 49: 275
[25] Monetta T, Bellucci F, Nicodemo L, et al.Protetive properties of epoxy-based organic coating on mild-steel[J]. Prog. Org. Coat., 1993, 21: 353
[26] Touzain S, Le Thu Q, Bonnet G.Evaluation of thick organic coatings degradation in seawater using cathodic protection and thermally accelerated tests[J]. Prog. Org. Coat., 2005, 52: 311
[1] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[4] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[5] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[6] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[7] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[8] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[9] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[10] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[11] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[13] 姚望, 周和荣, 肖葵, 刘鹏洋, 但佳永, 吴润. 中性盐雾环境中DC06超深冲钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[14] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[15] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.