Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 192-200    DOI: 10.11902/1005.4537.2018.003
  研究报告 本期目录 | 过刊浏览 |
加氢裂化空冷器管束多相流冲刷腐蚀数值模拟
姜爱国1,张建文1(),辛亚男1,丛晓明2,董轼3
1. 北京化工大学化工学院 北京 100029
2. 青海省地矿测绘院 西宁 810012
3. 山西兰花煤层气有限公司 晋城 030006
Numerical Simulation of Multiphase Erosion-corrosion of Tubes Bundles of Hydrocracking Air Cooler
Aiguo JIANG1,Jianwen ZHANG1(),Yanan XIN1,Xiaoming CONG2,Shi DONG3
1. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2. Qinghai Geology Mineral Surveying Institute, Xining 810012, China
3. Shanxi Orchid Coalbed Methane Co., Ltd., Jincheng 030006,China
全文: PDF(4962 KB)   HTML
摘要: 

基于某加氢裂化空冷器管束的冲刷腐蚀实际状况分析,建立了数值模拟模型。采用mixture模型和标准k-ε模型描述多相湍流流动过程,以此对空冷器的管箱、管束进行全流场数值模拟,获得湍动能分布状况;进而对空冷器腐蚀状况进行研究,获得不同位置处的冲刷腐蚀和电化学腐蚀速率。结果表明,最大冲刷腐蚀速率达到4.76 mm/a,且腐蚀损伤集中在空冷器管束进口端,模拟结果与空冷器管束实际腐蚀状况一致。模拟结果表明,与电化学腐蚀相比,冲刷腐蚀是导致空冷器管束腐蚀损坏的主要原因。在此基础上,提出对空冷器结构进行改进的技术方案;模拟计算表明,结构改进后的空冷器管束的冲刷腐蚀速率大大降低,显著提高了空冷器运行的安全与稳定性。

关键词 空冷器CFD湍动能冲刷腐蚀    
Abstract

Air cooler is the key equipment in the process of hydrocracking. The corrosion of air cooler becomes a prominent problem in the safe and stable operation of equipment. In this paper, a numerical simulation model is established based on the analysis of the erosion corrosion of the air cooler tubes in a hydrocracking unit. The mixture model and the standard k-ε model of CFD simulation software is used to simulate the whole flow field of the tube box and tube bundle of the air cooler. The corrosion position of the air cooler is predicted by the turbulent kinetic energy distribution. The corrosion amount of erosion corrosion and electrochemical corrosion are predicted as well. According to the simulation, the maximum erosion amount is 4.76 mm/a, and it is concentrated at the inlet of the tube bundle of air cooler. The simulation results are consistent with the actual corrosion of the air cooler. Comparing with electrochemical corrosion, erosion corrosion is the main cause of corrosion of air cooler. The amount of erosion and corrosion of the tube bundle of air cooler has been greatly reduced after the retrofit of the air cooler structure, therewith, the safety and stability of the air cooler have been greatly improved.

Key wordsair cooler    CFD    turbulent kinetic energy    erosion corrosion
收稿日期: 2018-01-08     
ZTFLH:  TE986  
基金资助:国家科技支撑计划(2015BAK39B02);青海省重点研发与转化计划(2018-SF-138)
通讯作者: 张建文     E-mail: zhangjw@mail.buct.edu.cn
Corresponding author: Jianwen ZHANG     E-mail: zhangjw@mail.buct.edu.cn
作者简介: 姜爱国,男,1993年生,硕士生

引用本文:

姜爱国,张建文,辛亚男,丛晓明,董轼. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
Aiguo JIANG, Jianwen ZHANG, Yanan XIN, Xiaoming CONG, Shi DONG. Numerical Simulation of Multiphase Erosion-corrosion of Tubes Bundles of Hydrocracking Air Cooler. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 192-200.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.003      或      https://www.jcscp.org/CN/Y2019/V39/I2/192

图1  液滴冲击金属壁面过程简图
图2  韧性金属和脆性金属的函数F(α)
PhaseFlow / kg·s-1Density / kg·m-3Viscosity / Pa·s
Gas1.641.5671.1×10-5
Liquid0.0828789.6644.35×10-4
表1  空冷器进口多相流物性参数
图3  空冷器腐蚀管束分布图
图4  网格无关性
图5  第一至第三排管束中流体的法向速度分布
图6  第一至第三排管束中流体的切向速度分布
图7  各排管束偏流比分布
图8  第一至第三排管束中流体的湍动能分布
图9  冲刷速率分布
图10  电化学腐蚀速率分布
图11  改进的空冷器结构图
图12  空冷器结构优化后第一至第三排管束中流体的法向速度分布
图13  空冷器结构优化后第一至第三排管束中流体的切向速度分布
图14  空冷器结构优化后各排管束中偏流比分布图
图15  空冷器结构优化后第一至第三排管束中湍动能分布
图16  优化后冲刷速率分布
图17  优化后电化学腐蚀速率分布
[1] Dai Z. Study on erosion corrosion of tube bundle of high pressure air cooler [D]. Nanjing: Nanjing Tech Unversity, 2007
[1] 代真. 高压空冷器管束冲刷腐蚀的研究 [D]. 南京: 南京工业大学, 2007
[2] Ellison B T, Wen C J. Hydrodynamic effects on corrosion [J]. AlChESymp. Ser., 1981, 77: 161
[3] Syrett B C. Erosion-corrosion of copper-nickel alloys in sea water and other aqueous environments—A literature review [J]. Corrosion, 1976, 32: 242
[4] Clark H M. The influence of the flow field in slurry erosion [J]. Wear, 1992, 152: 223
[5] Stack M M, Chacon-Nava J, Stott F H. Relationship between the effects of velocity and alloy corrosion resistance in erosion-corrosion environments at elevated temperatures [J]. Wear, 1995, 180: 91
[6] Liu J J, Yong X Y, Lin Y Z, et al. Erosion-corrosion behavior of carbon steel in different simulated flowing apparatuses [J]. Mater. Prot., 2003, 36(9): 25
[6] 刘景军, 雍兴跃, 林玉珍等. 不同流动体系中碳钢磨损腐蚀可比性的研究 [J]. 材料保护, 2003, 36(9): 25)
[7] Ren C Q, Liu D X, Bai Z Q, et al. Study on mechanical properties of corrosion scale on surface of tubular steel N80 [J]. J. Mater. Eng., 2004, (8): 17
[7] 任呈强, 刘道新, 白真权等. N80油管钢腐蚀产物膜的力学性能研究 [J]. 材料工程, 2004, (8): 17)
[8] Zeng M Q. Study on the causes of overhead air coolers failure of atmospheric distillation column [J]. Corros. Prot. Petrochem. Ind., 2003, 20(1): 30
[8] 曾孟秋. 常顶空冷器失效原因探讨 [J]. 石油化工腐蚀与防护, 2003, 20(1): 30)
[9] Liu X K, Fang Q X. Erosion corrosion of 2Cr13 and 1Cr17Mo2 [J]. Chem. Eng. Mach., 1998, 25(1): 12
[9] 刘新宽, 方其先. 两种不锈钢冲刷腐蚀的研究 [J]. 化工机械, 1998, 25(1): 12)
[10] Zheng Y G, Yao Z M, Long K, et al. Development of liquid / solid two-phase flow scour corrosion test apparatus and dynamic electrochemical test [J]. Corros. Sci. Prot. Technol., 1993, 5: 286
[10] 郑玉贵, 姚治铭, 龙康等. 液/固双相流冲刷腐蚀实验装置的研制及动态电化学测试 [J]. 腐蚀科学与防护技术, 1993, 5: 286
[11] Bhongale S. Effect of pressure, temperature and Froude number on corrosion rates in horizontal multiphase slug flow [D]. Athens:Ohio University, 1996
[12] Zheng D H, Che D F. Experimental study on hydrodynamic characteristics of upward gas-liquid slug flow [J]. Int. J. Multiph. Flow, 2006, 32: 1191
[13] Chen L H, Fan J R, Cen K F. Numerical study on the flow features of U-beam inertial separator [J]. J. Zhejiang Univ. Sci., 2002, 3: 387
[14] Ou G F, Zhan J L, Tang M, et al. Numerical simulation and erosion prediction of complete flow field of hydrogenation high pressure air cooler [J]. Petr. Refin. Eng., 2011, 41(10): 34
[14] 偶国富, 詹剑良, 唐萌等. 加氢高压空冷器全流场数值模拟和冲蚀预测 [J]. 炼油技术与工程, 2011, 41(10): 34)
[15] Ou G F, Cao J, Xie H P. Coupled simulation of flow and heat transfer for hydrocracker’s air coolers tubes [J]. Petr. Refin. Eng., 2010, 40(11): 42
[15] 偶国富, 曹晶, 谢浩平. 加氢裂化空冷管束流动传热的耦合模拟 [J]. 炼油技术与工程, 2010, 40(11): 42)
[16] Sun L, Zhu M, Ou G F, et al. Corrosion investigation of the inlet section of REAC pipes in the refinery [J]. Eng. Fail. Anal., 2016, 66: 468
[17] Valeh-E-Sheyda P, Rashidi H. Inhibition of corrosion in amine air cooled heat exchanger: Experimental and numerical study [J]. Appl. Therm. Eng., 2016, 98: 1241
[18] Hu Y H. Evaluation of erosion-corrosion of typical pipe fittings via CFD [D]. Hangzhou: Zhejiang University, 2012
[18] 胡跃华. 典型管件冲刷腐蚀的数值模拟 [D]. 杭州: 浙江大学, 2012
[19] Stack M M, Corlett N, Turgoose S. Some recent advances in the development of theoretical approaches for the construction of erosion-corrosion maps in aqueous conditions [J]. Wear, 1999, 233-235: 535
[20] Stack M M, Corlett N, Zhou S. Impact angle effects on the transition boundaries of the aqueous erosion-corrosion map [J]. Wear, 1999, 225-229: 190
[21] Huser A, Kvernvold O. Prediction of sand erosion in process and pipe components [A]. Proceedings of the 1st North American Conference on Multiphase Technology [C]. Banff, Canada, 1998: 217
[22] McLaury B S, Shirazi S A. An Alternate method to API RP 14E for predicting solids erosion in multiphase flow [J]. J. Energy Resour. Technol., 2000, 122: 115
[23] Zheng Y G, Yao Z M, Ke W. Review on the effects of hydrodynamic factors on erosion-corrosion [J]. Corros. Sci. Prot. Technol., 2000, 12: 36
[23] 郑玉贵, 姚治铭, 柯伟. 流体力学因素对冲刷腐蚀的影响机制 [J]. 腐蚀科学与防护技术, 2000, 12: 36
[24] Schiller L, Naumann A. A drag coefficient correlation [J]. Z. Ver. Deutsch. Ing., 1935, 77: 318
[1] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[2] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[3] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[4] 彭文山,曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析[J]. 中国腐蚀与防护学报, 2015, 35(6): 556-562.
[5] 刘贵群, 郑玉贵, 姜胜利, 荆军航, 董伟娟, 曾宏, 司品宪. 模拟炼油环境中Q235钢和Cr5Mo钢表面硫化物膜稳定性及动态冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 122-128.
[6] 周婷婷, 袁成清, 曹攀, 王雪君, 董从林. 柴油机喷油嘴内流体冲刷腐蚀的数值模拟分析[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
[7] 李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[8] 朱娟, 张乔斌, 陈宇, 张昭, 张鉴清, 曹楚南. 冲刷腐蚀的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(3): 199-210.
[9] 乔岩欣,刘飞华,任爱,姜胜利,郑玉贵. 高氮钢和321不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
[10] 李守彪, 许立坤,沈承金,李相波. 等离子喷涂耐冲蚀陶瓷涂层的性能研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 196-201.
[11] 金威贤 雒娅楠 宋诗哲. 金属材料实海冲刷腐蚀检测[J]. 中国腐蚀与防护学报, 2008, 28(6期): 337-340.
[12] 吴俊升; 李晓刚; 公铭扬; 李磊; 王博 . 己内酰胺精制薄膜蒸发器腐蚀失效分析[J]. 中国腐蚀与防护学报, 2007, 27(3): 181-185 .
[13] 王志武; 原素芳 . 黄铜HSn70-1A、HA177-2A的抗冲刷能力比较研究[J]. 中国腐蚀与防护学报, 2005, 25(3): 179-182 .
[14] 偶国富; 朱祖超; 杨健; 王乐勤 . 加氢反应流动物空冷器系统的腐蚀机理[J]. 中国腐蚀与防护学报, 2005, 25(1): 61-64 .
[15] 吴欣强; 敬和民; 郑玉贵 . 碳钢在高温环烷酸介质中冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22(5): 257-263 .