Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (1): 51-58    DOI: 10.11902/1005.4537.2018.001
  研究报告 本期目录 | 过刊浏览 |
304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究
刘辉1,2,邱玮1(),冷滨2(),俞国军2
1. 长沙理工大学能源与动力工程学院 长沙 410114
2. 中国科学院上海应用物理研究所 上海 201800
Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF
Hui LIU1,2,Wei QIU1(),Bin LENG2(),Guojun YU2
1. School of Energy and Power Engineering, Changsha University of Scinece & Technology, Changsha 410114, China
2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
全文: PDF(9718 KB)   HTML
摘要: 

通过静态腐蚀及SEM/EDS、EPMA等分析表征技术,研究了304和316H不锈钢在700 ℃ LiF-NaF-KF (FLiNaK) 熔盐中的腐蚀行为。结果表明,这两种不锈钢在FLiNaK熔盐中的主要腐蚀形式是表面和近表面晶界处Cr的选择性流失。316H不锈钢由于含有Mo,腐蚀深度及失重均低于304不锈钢。腐蚀后,两种不锈钢的表面均出现了富集Ni和Fe的腐蚀层,而近表面区域均出现了大量的纳米级析出相。EDS分析结果显示,这些析出相是Cr和Al的氮化物或碳氮化物,析出相显著提高了材料的硬度。

关键词 304不锈钢316H不锈钢氟化物熔盐晶间腐蚀纳米级析出相    
Abstract

The corrosion behavior of 304 and 316H stainless steels in molten LiF-NaF-KF(FLiNaK) salt at 700 ℃ was studied by static immersion test, followed by SEM/EDS and EPMA analyses. Results show that the corrosion characteristics of the two stainless steels in molten FLiNaK salt are mainly selective depletion of Cr from the surface and grain boundaries underneath the surface. The corrosion depth and weight loss of 316H stainless steel are lower than those of 304 stainless steel, which may be ascribed to the Mo addition in 316H steel. After corrosion, the two steels show surface corrosion layers enriched in Ni and Fe, as well as nano-sized precipitates in the steel matrix near the surface. EDS analyses suggest these precipitates to be Cr and Al nitrides or carbonitrides. The formation of these precipitates significantly increases the hardness of the materials.

Key words304 stainless steel    316H stainless steel    molten fluoride salt    intergranular corrosion    nano-sized precipitate
收稿日期: 2018-01-02     
ZTFLH:  TG172.6  
基金资助:国家自然科学基金(51301025);国家自然科学基金(51141001);国家自然科学基金(51501217)
通讯作者: 邱玮,冷滨     E-mail: hncsqqwk86@163.com;lengbin@sinap.ac.cn
Corresponding author: Wei QIU,Bin LENG     E-mail: hncsqqwk86@163.com;lengbin@sinap.ac.cn
作者简介: 刘辉,男,1992年生,硕士生

引用本文:

刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
Hui LIU, Wei QIU, Bin LENG, Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 51-58.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.001      或      https://www.jcscp.org/CN/Y2019/V39/I1/51

SteelCMnSSiPCrNiMoFe
3040.061.130.0020.40<0.00118.587.74---Bal.
316H0.061.080.0040.470.03516.2410.042.07Bal.
表1  304和316H不锈钢的化学成分
图1  不锈钢静态腐蚀浸泡实验容器示意图
SteelCrFeNiMo
30424112353951.1
316H16248429014.8
表2  腐蚀实验后FLiNaK盐中主要合金元素含量的ICP-OES分析结果
图2  经700 ℃的FLiNaK熔盐腐蚀400 h后304和316H不锈钢的表面SEM形貌
图3  304和316H不锈钢在FLiNaK熔盐中腐蚀400 h后截面的Cr,Fe和Ni的EPMA面扫描分析结果
图4  304和316H不锈钢腐蚀后截面的背散射像以及内部未受腐蚀影响区EDS线扫结果 (对应高倍像中的黑线)
PositionNAlCrFeNiMo
304 Unaffected zone (1)00.118.972.48.60
304 Precipitation zone (dark) (2)5.90.218.667.280.1
304 Corrosion zone (gray) (3)00.12.285.212.20.3
316H Unaffected zone (4)0017.569.910.52.1
316H Precipitation zone (dark) (5)3.40.717.765.410.22.6
316H Corrosion zone (gray) (6)001.681.516.20.7
表3  304和316H不锈钢腐蚀后内部各区域EDS元素分析 (括号内的数字对应图4中的相应区域)
[1] Cai X Z, Dai Z M, Xu H J. Thorium molten salt reactor nuclear energy system [J]. Physics, 2016, 45: 578
[1] 蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统 [J]. 物理, 2016, 45: 578
[2] Jiang M H, Xu H J, Dai Z M. Advanced fission energy program-TMSR nuclear energy system [J]. Bull. Chin. Acad. Sci., 2012, 27: 366
[2] 江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能——TMSR核能系统 [J]. 中国科学院院刊, 2012, 27: 366
[3] Serp J, Allibert M, Benes O, et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives [J]. Prog. Nucl. Energ., 2014, 77, 308
[4] Williams D F. Assessment of candidate molten salt coolants for the NGNP/NHI Heat Transfer Loop [R]. Oak Ridge: Oak Ridge National Lab, 2006
[5] Zhu Y S, Hou J, Yu G J, et al. Effects of exposing temperature on corrosion performance of weld joint of a Ni-Mo-Cr alloy [J]. J. Fluorine Chem., 2016, 182: 69
[6] Olson L C, Ambrosek J W, Sridharan K, et al. Materials corrosion in molten LiF-NaF-KF salt [J]. J. Fluorine Chem., 2009, 130: 67
[7] Wang Y L, Liu H J, Yu G J, et al. Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li, Na, K) F at 700 ℃ [J]. J. Fluorine Chem., 2015, 178: 14
[8] Charalampos A, Anselmo T C, Alexandre Y K C, et al. Technical description of the “mark 1” pebble-bed fluoride-salt-cooled high-temperature reactor (PB-FHR) power plant [R]. UCBTH-14-002. Berkeley: Department of Nuclear Engineering University of California, 2014
[9] Sellers R S, Cheng W J, Kelleher B C, et al. Corrosion of 316L stainless steel alloy and Hastelloy-N superalloy in molten eutectic LiF-NaF-KF salt and interaction with graphite [J]. Nucl. Technol., 2014, 188: 192
[10] Zheng G Q. Corrosion behavior of alloys in molten fluoride salts [D]. Wisconsin: The University of Wisconsin-Madison, 2015
[11] Ding X B, Sun H, Yu G J, et al. Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF [J].Chin J.. Soc. Corros. Prot., 2015, 35: 543
[11] 丁祥彬, 孙华, 俞国军等. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 543
[12] Koger J W. Alloy compatibility with LiF-BeF2 salts containing ThF4 and UF4 [R]. ORNL-4286. Oak Ridge: Oak Ridge National Lab, 1972
[13] Kondo M, Nagasaka T, Sagara A, et al. Metallurgical study on corrosion of austenitic steels in molten salt LiF-BeF2 [J]. J. Nucl. Mater., 2009, 386: 685
[14] Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the Advanced high-temperature Reactor (AHTR) [R]. ORNL/TM-2006/12. Oak Ridge: Oak Ridge National Lab, 2006
[15] Schneider M, Kremmer K, L?mmel C, et al. Galvanic corrosion of metal/ceramic coupling [J]. Corros. Sci., 2014, 80: 191
[16] Ozeryanaya I N. Corrosion of metals by molten salts in heat-treatment processes [J]. Met. Sci. Heat Treat., 1985, 27: 184
[17] Zeng C L, Li J, Zhou T. Galvanic corrosion in molten salts: A discussion of the corrosion mechanism of two-phase Ni-20Cr-20/30Cu alloys in eutectic (Li, K)2CO3 at 650 ℃ [J]. Oxid. Met., 2005, 64: 207
[18] Fontana M G, Staehle R W. Chromium depletion and void formation in Fe-Ni-Cr alloys during molten salt corrosion and related processes [A]. In: Koger J W. Advances in Corrosion Science and Technology [M]. New York: Plenum Press, 1974
[19] Ouyang F Y, Chang C H, You B C, et al. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments [J]. J. Nucl. Mater., 2013, 437: 201
[20] Zhang S L, Li M J, Wang X B, et al. Intergranular corrosion of 18-8 austenitic stainless steel [J].Chin J.. Soc. Corros. Prot., 2007, 27: 124
[20] 张述林, 李敏娇, 王晓波等. 18-8奥氏体不锈钢的晶间腐蚀 [J]. 中国腐蚀与防护学报, 2007, 27: 124
[21] Smith A F. The diffusion of chromium in type 316 stainless steel [J]. Met. Sci., 1975, 9: 375
[22] Olson L C, Sridharan K, Anderson M, et al. Intergranular corrosion of high temperature alloys in molten fluoride salts [J]. Mater. High Temp., 2010, 27: 145
[23] Bruemmer S M. Grain boundary chemistry and intergranular failure of austenitic stainless steels [J]. Mater. Sci.Forum, 1989, 46: 309
[24] Zheng G Q, He L F, Carpenter D, et al. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li2BeF4 (FLiBe) salt [J]. J. Nucl. Mater., 2016, 482: 147
[1] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[4] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[5] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[6] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[7] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[8] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[9] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[10] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[11] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[12] 沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
[13] 王永利,马利,熊良银,刘实. 夹杂对自来水环境下304不锈钢腐蚀及金属离子溶出的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 328-334.
[14] 彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[15] 丁祥彬,孙华,俞国军,周兴泰. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.