Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (1): 43-50    DOI: 10.11902/1005.4537.2017.215
  研究报告 本期目录 | 过刊浏览 |
几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究
王长罡1,魏洁1,魏欣1,穆鑫1,薛芳1,董俊华1(),柯伟1,李国平2
1. 中国科学院金属研究所 沈阳 110016
2. 山西太钢不锈钢股份有限公司 太原 030003
Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process
Changgang WANG1,Jie WEI1,Xin WEI1,Xin MU1,Fang XUE1,Junhua DONG1(),Wei KE1,Guoping LI2
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Technology Center of Taiyuan Iron and Steel Group Co. Ltd., Taiyuan 030003, China
全文: PDF(16740 KB)   HTML
摘要: 

在70 ℃的死亡绿液中,对316不锈钢以及超级不锈钢904L,254sMo和2507的人造缝隙电极进行了循环伏安测试和腐蚀形貌观察。结果表明,在70 ℃的死亡绿液中,254sMo和2507不锈钢具有良好的耐缝隙腐蚀能力,316和904L不锈钢的缝隙腐蚀损伤均十分严重。在缝隙边缘,316和904L不锈钢均呈现“蕾丝盖”结构,254sMo和2507不锈钢未见该腐蚀形貌。在缝隙腐蚀坑底部,超级双相不锈钢2507呈现电偶腐蚀的形貌特征。

关键词 超级不锈钢烟气脱硫死亡绿液人造缝隙电极缝隙腐蚀    
Abstract

The crevice corrosion of 316, 904L, 254sMo and 2507 stainless steels in a liquid of the so called green death at 70 ℃, which aims to simulate the corrosive environment of flue gas desulfurization process, was comparatively investigated by means of electrochemical cyclic polarization test and SEM. The results showed that 254sMo and 2507 stainless steel have excellent resistance to crevice corrosion, while the crevice corrosion induced damage of SS316 and SS904L is serious. The "lace cover" structures were observed on the edges of the gap of SS316 and SS904L, but not on that of SS254sMo and SS2507. At the bottom of crevice corrosion pit, duplex super stainless steel 2507 exhibits galvanic corrosion characteristics.

Key wordssuper stainless steel    flue gas desulfurization    death green solution    artificial crevice electrode    crevice corrosion
收稿日期: 2017-12-25     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51071160);国家高技术研究发展计划(2015AA034301)
通讯作者: 董俊华     E-mail: jhdong@imr.ac.cn
Corresponding author: Junhua DONG     E-mail: jhdong@imr.ac.cn
作者简介: 王长罡,男,1985年生,博士

引用本文:

王长罡,魏洁,魏欣,穆鑫,薛芳,董俊华,柯伟,李国平. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
Changgang WANG, Jie WEI, Xin WEI, Xin MU, Fang XUE, Junhua DONG, Wei KE, Guoping LI. Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 43-50.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.215      或      https://www.jcscp.org/CN/Y2019/V39/I1/43

SteelCCrNiMnSiPSMoNCuFePREN
3160.0516.910.61.600.500.0310.0062.05------Bal.23.665
904L0.0220.125.32.001.000.0450.0354.04---1.32Bal.33.432
254sMo0.0219.717.81.000.800.030.016.200.190.75Bal.43.2
25070.0325.47.011.000.800.0350.0204.200.270.50Bal.43.58
表1  4种不锈钢的合金元素成分及PREN值
图1  人造缝隙电极结构示意图及实物图
图2  316,904L,254sMo和2507不锈钢的人造缝隙电极在70 ℃死亡绿液中的循环伏安曲线
图3  4种不锈钢缝隙腐蚀数量统计图
图4  4种不锈钢缝隙腐蚀深度统计图
图5  316不锈钢人造缝隙电极在70 ℃死亡绿液中循环伏安测试后的腐蚀形貌
图6  904L不锈钢人造缝隙电极在70 ℃死亡绿液中循环伏安测试后的腐蚀形貌
图7  254sMo不锈钢人造缝隙电极在70 ℃死亡绿液中循环伏安测试后的腐蚀形貌
图8  2507不锈钢人造缝隙电极在70 ℃死亡绿液中循环伏安测试后的腐蚀形貌
图9  不锈钢缝隙腐蚀IR降机理示意图[14,15]
[1] Han W. Safety and corrosion prevention of chimney after flue gas desulphurization [J]. Electr. Safety Technol., 2010, 12(8): 12
[1] 韩伟. 烟气脱硫改造后烟囱的安全性及其防腐 [J]. 电力安全技术, 2010, 12(8): 12
[2] Xu S Q. Dew point corrosion and material selection (2) [J]. Petrochem. Corros. Prot., 2000, 17(3): 1
[2] 许适群. 关于露点腐蚀及用钢的综述 (二) [J]. 石油化工腐蚀与防护, 2000, 17(3): 1
[3] He J J, Xiang X X. A review of chimney corrosion study and anticorrosion material research in WFGD [J]. Environ. Technol., 2011, 35(4): 33
[3] 何佳杰, 向贤伟. 湿法烟气脱硫中烟囱腐蚀及其防腐材料研究现状 [J]. 环境技术, 2011, 35(4): 33
[4] Gao W, Luo J M, Yang J J. Research progress and application of double phase stainless steel [J]. Ordnance Mater. Sci. Eng., 2005, 28(3): 61
[4] 高娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用 [J]. 兵器材料科学与工程, 2005, 28(3): 61
[5] Xu Q. Corrosion-resisting alloy selection for flue gas desulfurization unit (FGD) [J]. Total Corros. Control, 2010, 24(10): 6
[5] 许青. 烟气脱硫(FGD)装置耐腐蚀合金的选择 [J]. 全面腐蚀控制, 2010, 24(10): 6
[6] Kim M T, Oh O Y, Chang S Y. Analysis of degradation of a super-austenitic stainless steel for flue gas desulfurization system after a fire accident [J]. Eng. Fail. Anal., 2008, 15: 575
[7] Han D, Jiang Y, Deng B, et al. Detecting critical crevice temperature for duplex stainless steels in chloride solutions [J]. Corrosion, 2011, 67: 025004
[8] Jamaluddin A M, Malika A U, Andijani I, et al. Crevice corrosion behavior of high-alloy stainless steels in a SWRO pilot plant [J]. Desalination, 2004, 171: 289
[9] Rajendran N, Rajeswari S. Super austenitic stainless steels-a promising replacement for the currently used type 316L stainless steel as the construction material for flue-gas desulphurization plant [J]. J. Mater. Sci., 1996, 31: 6615
[10] Zhang Y G, Li S Y, Fan H Q, et al. Corrosion behavior of stainless steel in flue gas desulphurization system [J]. Mater. Prot., 2010, 43(3): 64
[10] 张贻刚, 李淑英, 范洪强等. 不锈钢在烟气脱硫系统中的腐蚀行为 [J]. 材料保护, 2010, 43(3): 64
[11] Feng H. Research on corrosion behaviour of super austenitic stainless steel with high Mo and N in typically extreme environments [D]. Shenyang: Northeastern University Dissertations, 2014: 21
[11] 冯浩. 高钼高氮超级奥氏体不锈钢在典型极端环境中的腐蚀行为研究 [D]. 沈阳: 东北大学, 2014: 21
[12] Wang C G, Dong J H, Ke W, et al. Research on pitting corrosion behavior of copper in the solution with HCO3- and Cl- [J]. Acta Metall. Sin., 2012, 48: 1365
[12] 王长罡, 董俊华, 柯伟等. HCO3-和Cl-混合体系中Cu的点蚀行为研究 [J]. 金属学报, 2012, 48: 1365
[13] Wang C G, Dong J H, Ke W, et al. Effect of HCO3- and SO42- on the pitting corrosion behavior of Cu [J]. Acta Metall. Sin., 2012, 48: 85
[13] 王长罡, 董俊华, 柯伟等. HCO3-和SO42-对Cu点蚀行为的影响 [J]. 金属学报 2012, 48: 85
[14] Yang Y Z, Jiang Y M, Li J. Insitu investigation of crevice corrosion on UNS S32101 duplex stainless steel in sodium chloride solution [J]. Corros. Sci., 2013, 76: 163
[15] Al-khamis J N, Pickering H W. IR mechanism of crevice corrosion for alloy T-2205 duplex stainless steel in acidic-chloride media [J].
[15] J. Electrochem. Soc., 2001, 148: B314
[1] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[2] 陈东旭, 吴欣强, 韩恩厚. 缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.
[3] 吴志斌,魏英华,李京,孙超. 溶液状态对模拟剥离涂层底部Q345钢阴极极化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(5): 369-374.
[4] 杨佳星,赵平,孙成,许进. 硫酸盐还原菌对Q235钢缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58.
[5] 陈旭;李晓刚;杜翠薇; 梁平. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.
[6] 闫茂成; 王俭秋; 韩恩厚; 柯伟 . 埋地管线剥离覆盖层下阴极保护的有效性[J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262 .
[7] 赵景茂; 左禹; 熊金平 . 碳钢在点蚀/缝隙腐蚀闭塞区模拟溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2002, 22(4): 193-197 .
[8] 李正奉; 毛旭辉; 甘复兴 . 阴极保护下缝隙内的电流分布[J]. 中国腐蚀与防护学报, 2000, 20(6): 338-343 .
[9] 闫建中; 吴荫顺; 张琳 . 316L不锈钢在NaCl溶液微动过程中局部腐蚀作用研究[J]. 中国腐蚀与防护学报, 2000, 20(4): 237-242 .
[10] 李正奉; 毛旭辉; 甘复兴 . 阴极保护下缝隙内的电位分布[J]. 中国腐蚀与防护学报, 2000, 20(3): 129-134 .
[11] 钟庆东 . 采用丝束电极研究金属的缝隙腐蚀*[J]. 中国腐蚀与防护学报, 1999, 19(3): 189-192 .
[12] 梁成浩;金守训. 合金元素铁对钛缝隙腐蚀性能的影响[J]. 中国腐蚀与防护学报, 1995, 15(3): 210-216.