Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (6): 565-572    DOI: 10.11902/1005.4537.2017.213
  本期目录 | 过刊浏览 |
pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响
李鑫,陈旭,宋武琦,杨佳星,吴明()
1. 辽宁石油化工大学石油天然气工程学院 抚顺 113001
Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution
Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU()
1. College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(1925 KB)   HTML
摘要: 

采用动电位极化、电化学阻抗技术研究了不同pH值对X70钢在含硫酸盐还原菌 (SRB) 的南海海泥模拟溶液中电化学行为的影响,分析了X70钢表面发生的电化学反应。结果表明,溶液的pH值能影响SRB的生长,进而影响X70钢在南海海泥模拟溶液中的腐蚀行为。SRB在pH值为8条件下生长情况最好,在pH值为6条件下次之,在pH值为10条件下最差。pH值为8时,SRB生长期分为3个阶段:对数增长期、稳定生长期和衰亡期;pH值为6和10时,SRB生长期分为两个阶段:对数增长期和衰亡期。在对数增长期,SRB数量较少,微生物腐蚀作用较弱,X70钢的Ecorr较高,但当SRB数量增多后,微生物腐蚀作用增强,生物膜疏松且易脱落,导致局部腐蚀现象严重,Ecorr逐渐降低,金属腐蚀热力学倾向增大。在pH值为8条件下,微生物腐蚀作用最强,金属腐蚀速率最快;在pH值为10条件下,金属表面易形成钝化膜,且微生物腐蚀作用较弱,腐蚀速率最慢。

关键词 X70钢海泥模拟溶液pH值硫酸盐还原菌微生物腐蚀    
Abstract

The effect of pH value on the corrosion behavior of X70 steel in an artificial liquid containing sulfate-reducing bacteria (SRB) was investigated by means of potentiondynamic polarization, electrochemical impedance spectroscopy (EIS). The artificial liquid aims to simulate a sea mud extract, while the very sea mud was collected from the shallow seabed from off shore at Sanya of Hainan Island. The results show that the pH value of the simulated solution can affect the growth of SRB, and thus further affect the corrosion behavior of X70 steel. The solution with pH=8 is the best environment for SRB growth, pH=6 is the next and pH=10 is the worst. The SRB growth phase by pH=8 can be divided into three phases: logarithmic growth-, stable growth- and decay-phase. SRB growth phase by pH=6 and pH=10 can be divided into two phases: logarithmic growth- and decay-phase. In the logarithmic growth phase, the number of SRB is less and the effect of microbial corrosion is weak, therefore theEcorrof X70 is higher. However, when the number of SRB increases, the effect of microbial corrosion becomes serious, while the formed biofilm is loose and easy to fall off, which result in serious local corrosion, thereby theEcorrgradually decreases. In the simulated solution with pH=8 the effect of microbial corrosion is highest, which results further in the fastest corrosion rate of the steel. In the simulated solution with pH=10, the effect of microbial corrosion is weak, thus the passivation film can form easily on the steel surface, therefore, results in the slowest corrosion rate of the steel.

Key wordsX70 steel    sea mud simulation solution    pH value    sulfate-reducing bacteria    microbial corrosion
收稿日期: 2017-12-18     
ZTFLH:  TG174.36  
基金资助:国家自然科学基金(51574147);辽宁省教育厅项目(L2017LZD004)
通讯作者: 吴明     E-mail: wuming0413@163.com
Corresponding author: Ming WU     E-mail: wuming0413@163.com
作者简介: 李鑫,男,1992年生,硕士生

引用本文:

李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
Xin LI, Xu CHEN, Wuqi SONG, Jiaxing YANG, Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 565-572.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.213      或      https://www.jcscp.org/CN/Y2018/V38/I6/565

图1  SRB在不同pH值南海海泥模拟溶液中的生长曲线
图2  X70钢在不同pH值含有SRB的南海海泥模拟溶液中的Ecorr
图3  X70钢在不同pH值含有SRB的南海海泥模拟溶液中的极化曲线
图4  X70钢在含有SRB的不同pH值南海海泥模拟溶液中的腐蚀电流密度
图5  硫酸盐还原菌腐蚀图解
图6  X70钢在含有SRB的不同pH值南海海泥模拟溶液中的Nyquist图和Bode图
图7  X70钢在含有SRB的南海海泥模拟溶液中EIS等效电路图
pHTime / dRs/ Ω·cm2Qf/ 10-4F·cm-2n1Rf/ Ω·cm2Qdl/ 10-4F·cm-2n2Rct/ Ω·cm2
6415.895.8470.90536.88614.1800.93554851
715.2351.370.908217.69050.9700.97184280
1015.93115.3---230.30070.950---3648
1415.236.323---9.84638.8300.95784398
8416.3111.470.909013713.808---1417
715.3069.190.82787.21058.4500.86811309
1014.99275.3---18.450332.800---1270
1417.2199.94---9.720162.7---2455
10415.1158.480.8911317716.7101.00002451
714.4374.790.873825.92053.9500.96684339
1015.1112.46---2.42864.8700.77645931
1414.3638.830.823516.05016.2601.00004542
表1  X70钢在含有SRB的不同pH值南海海泥模拟溶液中EIS等效电路拟合结果
图8  X70钢在含有SRB的不同pH值南海海泥模拟溶液中的Rp
[1] Al-Dakkan K,Alsaif K.On the design of a suspension system for oil and gas transporting pipelines below ocean surface[J].Arabian J. Sci. Eng.,2012,37:2017
[2] Liu T,Zhang Y F,Chen X,et al.Effect of SRB on corrosion behavior of X70 steel in a simulated soil solution[J]. J Chin. Soc. Corros. Prot., 2014,34:112
[2] 刘彤, 张艳飞, 陈旭, 等. SRB对X70钢在土壤模拟溶液中腐蚀行为的影响[J].中国腐蚀与防护学报,2014,34:112
[3] Duan J Z,Ma S D,Huang Y L.Study on regional seabed sediment induced corrosion[J].Corros. Sci. Prot. Technol.,2001,13:37
[3] 段继周,马士德,黄彦良.区域性海底沉积物腐蚀研究进展[J].腐蚀科学与防护技术,2001,13:37
[4] Yu N,Gao J F,Zhang G G,et al.Corrosion behavior of carbon steel pipelines under different deposits in oil and gas transportation[J]. J Univ. Sci. Technol. Beijing, 2015,37:461
[4] 喻能, 高继峰, 张国安,等. 碳钢油气输送管道不同沉积物下的腐蚀行为[J].工程科学学报,2015,37:461
[5] Muyzer G,Stams A J M.The ecology and biotechnology of sulphate-reducing bacteria[J].Nat. Rev. Microbiol.,2008,6:441
[6] Wan Y,Zhang D,Liu H Q,et al.Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions[J].Electrochim. Acta,2010,55:1528
[7] Tributsch H,Rojas-Chapana J A,B?rtels C C,et al.Role of transient iron sulfide films in microbial corrosion of steel[J].Corrosion,1998,54:216
[8] Koval V P,Mindyuk A K,Vasilenko I I.Effect of temperature and form of depolarization on stress-corrosion cracking of carbon steel[J].Soviet Mater. Sci.,1973,6:627
[9] Alves V A,Brett C M A.Characterisation of passive films formed on mild steels in bicarbonate solution by EIS[J].Electrochim. Acta,2002,47:2081
[10] Han D,Jiang Y M,Shi C,et al.Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions[J]. J. Mater. Sci.,2012,47:1018
[11] Lv J L,Luo H Y.Effect of temperature and chloride ion concentration on corrosion of passive films on nano/ultrafine grained stainless steels[J]. J Mater. Eng. Perform.,2014,23:4223
[12] Wei H.Corrosion behavior of API X60 pipeline steels in sea mud[D].Qingdao:China Ocean University,2005
[12] 魏华.API X60管线钢在海泥中的腐蚀行为研究[D].青岛:中国海洋大学,2005
[13] Zhang L,Du C W,Li X G.Effects of temperature, oxygen concentration and pH value on electrochemical behavior of X70 pipeline steel[J].Heat Treat. Met.,2008,33(11):36
[13] 张亮,杜翠薇,李晓刚.温度、pH值和氧浓度对X70管线钢电化学行为的影响[J].金属热处理,2008,33(11):36
[14] Wang D,Xiao H Z,Xie F,et al.Effects of temperature, HCO3-and pH value on corrosion behavior of X70 Steel in Chengdu simulated soil solution[J].Mater. Prot.,2017,50(1):77
[14] 王丹,肖辉宗,谢飞等.温度、HCO3-和pH值对X70钢在成都土壤模拟溶液中腐蚀行为的影响[J].材料保护,2017,50(1):77
[15] Wei H,Wang X T,Gao R J,et al.Corrosion behavior of SML, ERW pipeline steels exposed to seamud[J].Electrochemistry,2005,11:314
[15] 魏华,王秀通,高荣杰等.SML, ERW管线钢在海泥中的腐蚀行为[J].电化学,2005,11:314
[16] Guo Q L,Gu Z J,Zhang Z G.Electrochemical behavior carbon steel in seamud[J]. J Chin. Soc. Corros. Prot., 1999,19:315
[16] 郭琦龙, 辜志俊, 张志刚.碳钢在海泥中的电化学行为[J].中国腐蚀与防护学报,1999,19:315
[17] Huang Y L,Zhu Y Y,Huang S D,et al.Hydrogen permeation investigation of a marine steel in the sea mud with sulfate-reducing bacteria[J]. J Chin. Soc. Corros. Prot., 2008,28:355
[17] 黄彦良, 朱永艳, 黄偲迪, 等. 海洋结构用钢在海泥中的氢渗透行为[J].中国腐蚀与防护学报,2008,28:355
[18] Sun C,Han E-H,Wang X.Effects of SRB on corrosion of carbon steel in seamud[J].Corros. Sci. Prot. Technol.,2003,15:104
[18] 孙成,韩恩厚,王旭.海泥中硫酸盐还原菌对碳钢腐蚀行为的影响[J].腐蚀科学与防护技术,2003,15:104
[19] Ma S D,Li Y T,Xie X B,et al.Electrochemical measurement of steel corrosion in seabottom sediment with “MD” method[J].Chin. J. Oceanol. Limnol.,1996,14:154
[20] Zhang J L,Hou B R,Guo G Y,et al.Effect of sulphate-reducing bacteria on electro-chemical corrosion behavior of 16mn steel in sea mud[J].Chin. J. Oceanol. Limnol.,2001,19:87
[21] Huang G Q.Corrosion behaviour of carbon steels immersed in sea areas of China[J].Corros. Sci. Prot. Technol.,2001,13:81
[21] 黄桂桥.碳钢在我国不同海域的海水腐蚀行为[J].腐蚀科学与防护技术,2001,13:81
[22] Yin B.The research of MIC and protection of copper-nickel alloy in the marine environment[D].Qingdao:Ocean University of China,2012
[22] 尹兵.海洋环境下铜镍合金的微生物附着腐蚀与防护研究[D].青岛:中国海洋大学,2012
[23] Xie W J,Li D,Hu Y L,et al.Application of free corrosion potential to predict corrosion damage of LY12CZ aluminum alloy[J]. J Chin. Soc. Corros. Prot., 1999,19:95
[23] 谢伟杰, 李荻, 胡艳玲, 等. 用自腐蚀电位预测LY12CZ铝合金的腐蚀损伤[J].中国腐蚀与防护学报,1999,19:95
[24] Wu T Q,Ding W C,Zeng D C,et al.Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) electrochemical analysis[J]. J Chin. Soc. Corros. Prot., 2014,34:346
[24] (吴堂清, 丁万成, 曾德春, 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅰ)电化学分析[J].中国腐蚀与防护学报,2014,34:346
[25] Dong Z H,Liu T,Liu H F.Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J].Biofouling,2011,27:487
[26] Liu H W,Xu D K,Wu Y N,et al.Research progress in corrosion of steels induced by sulfate reducing bacteria[J].Corros. Sci. Prot. Technol.,2015,27:409
[26] 刘宏伟,徐大可,吴亚楠等.微生物生物膜下的钢铁材料腐蚀研究进展[J].腐蚀科学与防护技术,2015,27:409
[27] Liu T,Liu H,Hu Y,et al.Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel[J].Mater. Corros.,2009,60:218
[28] King R A,Miller J D A,Smith J S.Corrosion of mild steel by iron sulphides[J].Br. Corros. J.,1973,8:137
[29] Wu T Q,Yan M C,Zeng D C,et al.Microbiologically induced corrosion of X80 pipeline steel in a near-neutral pH soil solution[J].Acta Metall. Sin. (Engl. Lett.),2015,28:93
[30] Miranda E,Bethencourt M,Botana F J,et al.Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator[J].Corros. Sci.,2006,48:2417
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[7] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[9] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[10] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[11] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[12] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[13] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[14] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[15] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.