Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (2): 130-137    DOI: 10.11902/1005.4537.2017.212
  研究报告 本期目录 | 过刊浏览 |
海工结构用2205双相不锈钢氢致开裂行为研究
童海生1,孙彦辉2,宿彦京3,庞晓露1,高克玮1,3()
1. 北京科技大学材料科学与工程学院 北京 100083
2. 北京科技大学 钢铁共性技术协同创新中心 北京 100083
3. 北京科技大学 教育部环境断裂重点实验室 北京 100083
Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure
Haisheng TONG1,Yanhui SUN2,Yanjing SU3,Xiaolu PANG1,Kewei GAO1,3()
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Collaborative Innovation Center of Steel Technology University of Science and Technology Beijing, Beijing 100083, China
3. Key Laboratory for Environmental Fracture Ministry of Education, University of Technology Beijing, Beijing 100083, China
全文: PDF(17888 KB)   HTML
摘要: 

模拟了海工结构的2205双相不锈钢钢筋 (A-DSS和B-DSS) 在人工海水中不同条件下的服役行为。通过D-S双电解池氢渗透技术测试了氢在两种钢筋中的扩散行为。通过慢应变速率拉伸实验,结合SEM观察,研究了钢筋在空气以及人工海水中的拉伸断裂行为,分析了阴极极化对断裂行为的影响。结果表明,氢在A-DSS和B-DSS两种钢筋中的扩散系数D分别为2.36×10-10和2.31×10-10 cm2/s。当A-DSS和B-DSS在人工海水中外加阴极极化电位分别为-800和-700 mV (SCE) 时,两种钢筋的环境断裂敏感性最低。利用SEM观察了在外加电位下断裂试样的表面形貌,可观察到表面裂纹在铁素体相中萌生并扩展,终止于奥氏体相或两相界面。

关键词 2205双相不锈钢阴极极化氢脆裂纹萌生    
Abstract

The hydrogen-induced cracking behavior of a new-designed duplex stainless steel 2205 (including its two-subtypes A-DSS and B-DSS) used for marine structures in artificial seawater was investigated by means of slow strain rate test (SSRT), mechanical test and scanning electron microscope. While the hydrogen permeation behavior of A-DSS and B-DSS was studied by Devanathan-Stachurski's hydrogen permeation technique. The results showed that the hydrogen diffusion coefficients for A-DSS and B-DSS were 2.36×10-10 and 2.31×10-10 cm2/s, respectively. A-DSS and B-DSS exhibited the lowest susceptibilities to environment induced fracture when the applied cathodic potentials were -800 and -700 mV (SCE), respectively. Correspondingly, SEM observations of the fracture surface of the above two steels showed that cracks initiated in ferrite phase, and were arrested by austenite phase or interface boundaries of ferrite/austenite.

Key words2205 duplex stainless steel    cathodic polarized    hydrogen embrittlement    crack initiation
收稿日期: 2017-12-18     
ZTFLH:  TG174.1  
基金资助:国家高技术研究发展计划(2015AA03A502);国家自然科学基金(51771026)
通讯作者: 高克玮     E-mail: kwgao@mater.ustb.edu.cn
Corresponding author: Kewei GAO     E-mail: kwgao@mater.ustb.edu.cn
作者简介: 童海生,男,1991年生,硕士生

引用本文:

童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
Haisheng TONG, Yanhui SUN, Yanjing SU, Xiaolu PANG, Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 130-137.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.212      或      https://www.jcscp.org/CN/Y2019/V39/I2/130

SteelCSiMnPSCrNiMoNBFe
A-DSS0.0220.451.210.0210.001121.855.152.940.150.0026Bal.
B-DSS0.0260.420.960.0260.001322.434.923.150.180.0016Bal.
表1  两种双相不锈钢钢筋的化学成分
图1  两种钢筋的显微组织
图2  A-DSS钢和B-DSS钢在不同拉伸条件下的应力应变曲线
ConditionA-DSSConditionB-DSS
Air28.13Air54.11
OCP24.56OCP51.57
-800 mV26.92-700 mV52.07
-850 mV25.03-750 mV49.70
-900 mV25.81-800 mV48.86
-1000 mV21.94-1000 mV34.20
-1200 mV20.10-1200 mV28.30
表2  A-DSS钢和B-DSS钢在不同拉伸条件下的延伸率
图3  A-DSS和B-DSS钢在不同拉伸条件下的抗拉强度
图4  A-DSS和B-DSS钢在不同条件下断裂后的延伸率和断面收缩率
图5  A-DSS和B-DSS钢在不同条件下环境断裂敏感性的变化
图6  A-DSS钢在不同外加电位下断口附近表面形貌
图7  B-DSS钢在不同外加电位下试样断口附近表面形貌
图8  A-DSS钢在不同外加电位下试样的断口形貌
图9  B-DSS钢在不同外加电位下试样的断口形貌
图10  试样断口附近表面裂纹形貌
[1] Song W J. Application Technology of 2205 Duplex Phase Stainless Steel in Kela-2 Project [M]. Beijing: Petroleum Industry Press, 2007
[1] 宋文杰. 2205双相不锈钢在克拉2工程中的应用技术 [M]. 北京: 石油工业出版社, 2007
[2] Herms E, Olive J M, Puiggali M. Hydrogen embrittlement of 316L type stainless steel [J]. Mater. Sci. Eng., 1999, A272: 279
[3] Wolfe L H, Burnette C C, Joosten M W. Hydrogen embrittlement of cathodically protected subsea bolting alloys [J]. Mater. Perform., 1993, 32: 14
[4] Francis R, Byrne G, Warburton G R. Effects of cathodic protection on duplex stainless steels in seawater [J]. Corrosion, 1997, 53: 234
[5] Kim S J, Okido M, Moon K M. An electrochemical study of cathodic protection of steel used for marine structures [J]. Korean J. Chem. Eng., 2003, 20: 560
[6] El-Yazgi A A, Hardie D. The embrittlement of a duplex stainless steel by hydrogen in a variety of environments [J]. Corros. Sci., 1996, 38: 735
[7] Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522
[8] Wang X R, Zhang L, Chang W, et al. The investigation on hydrogen induced stress cracking of duplex stainless steel under cathodic protection [A]. 8th National Environmental Sensitive Fracture Symposium [C]. Daqing, 2011: 132
[8] 王鑫茹, 张雷, 常炜等. 双相不锈钢在阴极保护下的氢致应力开裂研究 [A]. 第八届全国环境敏感断裂学术研讨会 [C]. 大庆, 2011: 132)
[9] Meinhardt C P, Scheid A, dos Santos J F, et al. Hydrogen embrittlement under cathodic protection of friction stir welded UNS S32760 super duplex stainless steel [J]. Mater. Sci. Eng., 2017, A706: 48
[10] Flowers J W, Beck F H, Fontana M G. Corrosion and age hardening studies of some cast stainless alloys containing ferrite [J]. Corrosion, 1963, 19: 186t
[11] Sherman D H, Duquette D J, Savage W F. Stress corrosion cracking behavior of duplex stainless steel weldments in boiling MgCl2 [J]. Corrosion, 1975, 31: 376
[12] Ha H Y, Seo W G, Park J Y, et al. Influences of Mo on stress corrosion cracking susceptibility of newly developed FeCrMnNiNC-based lean austenitic stainless steels [J]. Mater. Charact., 2016, 119: 200
[13] Silverstein R, Glam B, Eliezer D, et al. Dynamic deformation of hydrogen charged austenitic-ferritic steels: Hydrogen trapping mechanisms, and simulations [J]. J. Alloy. Compd., 2018, 731: 1238
[14] Hsu J W, Tsai S Y, Shih H C. Hydrogen embrittlement of SAF 2205 duplex stainless steel [J]. Corrosion, 2002, 58: 858
[15] Guo L Q, Li M, Shi X L, et al. Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques [J]. Corros. Sci., 2011, 53: 3733
[16] Li M, Guo L Q, Qiao L J, et al. The mechanism of hydrogen-induced pitting corrosion in duplex stainless steel studied by SKPFM [J]. Corros. Sci., 2012, 60: 76
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[3] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[4] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[5] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[6] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[7] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[8] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[9] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[10] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[11] 张天翼,吴俊升,郭海龙,李晓刚. 模拟海水中HSO3-对2205双相不锈钢钝化膜成分及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[12] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[13] 郭望,赵卫民,张体明,杜天海,王勇. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[14] 张体明, 赵卫民, 郭望, 王勇. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[15] 郝文魁, 刘智勇, 张新, 杜翠薇, 李晓刚, 刘翔. H2S浓度对35CrMo钢应力腐蚀开裂的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.