Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (1): 36-42    DOI: 10.11902/1005.4537.2017.210
  研究报告 本期目录 | 过刊浏览 |
Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能
廖彤1,2,3,马峥1,3,李蕾蕾1,3,马秀敏1,3,王秀通1,3,侯保荣1,3()
1. 中国科学院海洋研究所 青岛 266071
2. 中国科学院大学 北京 100049
3. 青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室 青岛 266237
Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel
Tong LIAO1,2,3,Zheng MA1,3,Leilei LI1,3,Xiumin MA1,3,Xiutong WANG1,3,Baorong HOU1,3()
1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Open Studio for Marine Corrosion and Protection, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
全文: PDF(7072 KB)   HTML
摘要: 

采用化学浴法在阳极氧化的TiO2纳米管表面沉积Fe2O3,制备Fe2O3/TiO2纳米复合材料。通过扫描电子显微镜 (SEM),X射线衍射 (XRD),X射线光电子能谱 (XPS),紫外-可见漫反射吸收光谱 (UV-vis DRS) 等手段对材料的形貌、晶相、成分、光响应性等进行表征。通过测试可见光下开/闭光时的开路电位 (OCP)、光致激发电流 (i-t)、电化学阻抗谱 (EIS) 等研究复合材料的光电性能。结果表明,Fe2O3纳米颗粒的修饰能增加TiO2纳米管对可见光的利用效率,增强阴极保护性能。0.05 mol/L Fe(NO3)3制备的Fe2O3/TiO2纳米复合材料在可见光下,耦联304不锈钢后光生电位达-740 mV,比纯TiO2纳米管低约300 mV,对304不锈钢起到更好的阴极保护效果。

关键词 光生阴极保护Fe2O3/TiO2纳米复合材料304不锈钢    
Abstract

Fe2O3/TiO2 nanocomposites were fabricated by chemical bath deposition on the surface of the TiO2 nanotubes, which had been prepared on titanium foil via anodic oxidation method. Their morphology, phase constituent, composition, and light response were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS). Photoelectric properties of the nanocomposites were assessed by measuring open circuit potential (OCP) under intermittent illumination and photocurrent density versus time (i-t), as well as electrochemical impedance spectroscopy (EIS). Results indicate that the incorporation of Fe2O3 increases the utilization efficiency of visible light and strengthens the cathodic protection performance of the TiO2 nanotubes. In visible light, the open circuit potential of Fe2O3/TiO2 nanocomposite prepared in the bath of 0.05 mol/L Fe(NO3)3 is -740 mV, about 300 mV lower than that of the ordinary TiO2 nanotubes, a better cathodic protection effect for 304 stainless steel.

Key wordsphotocathode protection    Fe2O3/TiO2 nanocomposite    304 stainless steel
收稿日期: 2017-12-13     
ZTFLH:  TG174  
基金资助:国家重点基础研究发展计划((2014CB643304));中国科学院战略性先导科技专项 (A类)((XDA13040401));中国工程院重点项目(2017-XZ-16)
通讯作者: 侯保荣     E-mail: baoronghou@163.com
Corresponding author: Baorong HOU     E-mail: baoronghou@163.com
作者简介: 廖彤,女,1991年生,硕士生

引用本文:

廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
Tong LIAO, Zheng MA, Leilei LI, Xiumin MA, Xiutong WANG, Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 36-42.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.210      或      https://www.jcscp.org/CN/Y2019/V39/I1/36

图1  电化学测试装置示意图
图2  纯TiO2纳米管和Fe2O3/TiO2纳米复合材料的SEM像及复合材料Fe2O3/TiO2 (C) 的EDS分析结果
图3  Fe2O3/TiO2纳米复合材料的XRD谱
图4  Fe2O3/TiO2 (C) 复合材料的XPS谱
图5  Fe2O3/TiO2复合材料紫外-可见漫反射吸收光谱
图6  304不锈钢耦合复合光阳极在开闭光条件下的开路电位变化
图7  复合光阳极在开闭光条件下的光电流密度-时间曲线
图8  Fe2O3/TiO2光阳极电化学阻抗谱图,高频区放大图及等效拟合电路
[1] Yuan J N, Tsujikawa S. Characterization of sol-gel-derived TiO2 coatings and their photoeffects on copper substrates [J]. J. Electrochem. Soc., 1995, 142: 3444
[2] Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping [J]. Corros. Sci., 2013, 68: 101
[3] Cui S W, Yin X Y, Yu Q L, et al. Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light [J]. Corros. Sci., 2015, 98: 471
[4] Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents at N-Doped TiO2 film electrodes [J].J. Phys. Chem., 2004, 108B: 10617
[5] Peng F, Cai L F, Huang L, et al. Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method [J]. J. Phys. Chem. Solids, 2008, 69: 1657
[6] Nishikiori H, Hayashibe M, Fujii T. Visible light-photocatalytic activity of sulfate-doped titanium dioxide prepared by the sol-gel method [J]. Catalysts, 2013, 3: 363
[7] Yun H, Li J, Chen H B, et al. A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel [J]. Electrochim. Acta, 2007, 52: 6679
[8] Sun M M, Chen Z Y, Yu J Q. Highly efficient visible light induced photoelectrochemical anticorrosion for 304 SS by Ni-doped TiO2 [J]. Electrochim. Acta, 2013, 109: 13
[9] Zhu J F, Zheng W, He B, et al. Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water [J].
[9] J. Mol. Catal., 2004, 216A: 35
[10] Sun H Q, Zhou G L, Liu S Z, et al. Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants [J]. Chem. Eng. J., 2013, 231: 18
[11] Agorku E A, Mamba B B, Pandey A C, et al. Sulfur/gadolinium-codoped TiO2 nanoparticles for enhanced visible-light photocatalytic performance [J]. J. Nanomater, 2014, 2014: 289150
[12] Oppong O O B, Anku W W, Shukla S K, et al. Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites [J].
[12] J. Sol-Gel Sci. Technol., 2016, 80: 38
[13] Meng F, Lu F. Effect of silver content on energy gap and phase structure of silver-titania thin films prepared by radio frequency magnetron sputtering [J]. J. Chin. Ceram. Soc., 2009, 37: 2130
[14] Khan M A, Han D H, Yang O B. Enhanced photoresponse towards visible light in Ru doped Titania nanotube [J]. Appl. Surf. Sci., 2009, 255: 3687
[15] Li H, Wang X T, Liu Y, et al. Ag and SnO2 co-sensitized TiO2 photoanodes for protection of 304SS under visible light [J]. Corros. Sci., 2014, 82: 145
[16] Park H, Bak A, Jeon T, et al. Photo-chargeable and dischargeable TiO2 and WO3 heterojunction electrodes [J]. Appl. Catal., 2012, 115-116B: 74
[17] Zhang L, Wang X T, Liu F G, et al. Photogenerated cathodic protection of 304ss by ZnSe/TiO2 NTs under visible light [J]. Mater. Lett., 2015, 143: 116
[18] Mane R S, Roh S J, Joo O S, et al. Improved performance of dense TiO2/CdSe coupled thin films by low temperature process [J]. Electrochim. Acta, 2005, 50: 2453
[19] Subasri R, Deshpande S, Seal S, et al. Evaluation of the performance of TiO-CeO bilayer coatings as photoanodes for corrosion protection of copper [J]. Electrochem. Solid-State Lett., 2006, 9: B1
[20] Kalanur S, Hwang Y, Joo O. Construction of efficient CdS-TiO2 heterojunction for enhanced photocurrent, photostability, and photoelectron lifetimes [J]. J. Colloid Interface Sci., 2013, 402: 94
[21] Townsend T K, Sabio E M, Browning N D, et al. Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling [J]. Energy Environ. Sci., 2011, 4: 4270
[22] Moulder J F, Chastain J, King R C. Handbook of X-Ray Photoelectron Spectroscopy [M]. Massachusetts: Perkin-Elmer, 1995
[23] Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina [J]. Chem. Mater., 2002, 2: 186
[24] Dai G P, Yu J G, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p?n junction BiOI/TiO2 nanotube arrays [J].
[24] Phys J.. Chem. C, 2011, 115: 7339
[25] Bu Y Y, Chen Z Y, Yu J Q, et al. A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion [J]. Electrochim. Acta, 2013, 88: 294
[26] Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of H2O2-treated In2O3 thin-film photoelectrode under visible light [J]. Surf. Coat. Technol., 2015, 266: 79
[27] Lei C X, Liu Y, Zhou H, et al. Photogenerated cathodic protection of stainless steel by liquid-phase-deposited sodium polyacrylate/TiO2 hybrid films [J]. Corros. Sci., 2013, 68: 214
[28] Zhang L, Wang X T, Li H, et al. Photogenerated cathodic protection properties of CdSe-TiO2 composite material on 304 stainless steel [J]. Corros. Prot., 2015, 36: 258
[28] 张亮, 王秀通, 李红等. CdSe-TiO2复合材料对304不锈钢的光生阴极保护性能 [J]. 腐蚀与防护, 2015, 36: 258
[29] Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of the C3N4 @In2O3 nanocomposite with quasi-shell-core structure under visible light [J]. J. Alloy. Compd., 2015, 618: 734
[1] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[3] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[4] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[5] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[6] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[7] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[8] 沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
[9] 王永利,马利,熊良银,刘实. 夹杂对自来水环境下304不锈钢腐蚀及金属离子溶出的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 328-334.
[10] 方玉荣,付朝阳. 酸性FeCl3溶液中304不锈钢的超声腐蚀和缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
[11] 叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[12] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[13] 田文明,杜楠,赵晴. 电子散斑干涉技术测量304不锈钢点蚀电位 的方法研究[J]. 中国腐蚀与防护学报, 2012, 32(5): 431-436.
[14] 万冰华,费敬银,冯光勇,张午花,王少兰. Zn-Co-TiO2纳米复合镀层的光生阴极保护特性[J]. 中国腐蚀与防护学报, 2012, 32(4): 327-332.
[15] 李季,赵林,李博文,郑丽群,韩恩厚. 304不锈钢点蚀的电化学噪声特征[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240.