Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 471-477    DOI: 10.11902/1005.4537.2017.202
  研究报告 本期目录 | 过刊浏览 |
超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析
李洋, 李承媛, 陈旭(), 杨佳星, 王欣彤, 明男希, 韩镇泽
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field
Yang LI, Chengyuan LI, Xu CHEN(), Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(923 KB)   HTML
摘要: 

采用动电位极化曲线测量了超级13Cr不锈钢在不同海洋油气田环境因素下的腐蚀速率;利用灰关联法分析了Cl-浓度、S2-浓度、pH值和温度与超级13Cr不锈钢腐蚀行为之间的关系。结果表明:海洋油气田环境中,影响超级13Cr不锈钢腐蚀行为的主要环境因素按关联度大小依次为:Cl-浓度 (0.8223)>温度 (0.7704)>pH值 (0.7646)>S2-浓度 (0.7595)。通过改进层次分析法对海洋环境中环境因素对超级13Cr腐蚀速率进行权重分析,权重从大到小依次为:Cl-浓度 (0.3905)>温度 (0.2761)>pH值 (0.1953)>S2-浓度 (0.1381)。海洋油气田环境中高浓度Cl-和高温环境是造成超级13Cr不锈钢腐蚀失效的主要原因。

关键词 海洋油气田环境超级13Cr不锈钢腐蚀速率灰关联分析    
Abstract

The corrosion rate of super 13Cr stainless steel was measured by potentiodynamic polarization curves in different environments of marine oil and gas field. Then the relationship between the corrosion behavior of super 13Cr stainless steel with the concentration of Cl-, concentration of S2-, pH value and temperature was evaluated by means of grey relationship analysis. Results showed that the grey correlation degree of corrosion factors in the marine oil and gas environments could be ranked with a descending sequence as follows: concentration of Cl- (0.8223)>temperature (0.7704)>pH value (0.7646)>concentration of S2- (0.7595). The weight of the effect of each corrosion factor on the corrosion rate of super 13Cr stainless steel was analyzed by hierarchy process, which then could be ranked with a descending sequence as follows: concentration of Cl- (0.3905)>temperature (0.2761)>pH value (0.1953)>concentration of S2- (0.1381). The main factors of the marine oil and gas environment, which caused the corrosion failure of super 13Cr stainless steel, were the high concentration of Cl- and high temperature.

Key wordsmarine oil and gas environment    super 13Cr stainless steel    corrosion rate    grayrelationship analysis
收稿日期: 2017-11-27     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金 (51574147) 和辽宁省教育厅项目 (L2017LZD004)
作者简介:

作者简介 李洋,男,1992年生,硕士生

引用本文:

李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 471-477.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.202      或      https://www.jcscp.org/CN/Y2018/V38/I5/471

图1  在各种条件的溶液中超级13Cr不锈钢的动电位极化曲线
Cl- concentration / molL-1 S2- concentration / molL-1 Temperature / ℃ pH value Icorr / μAcm-2 VL / mma-1
0.1 0 25 7 0.019 0.021
0.25 0 25 7 0.117 0.142
0.6 0 25 7 0.475 0.561
0.85 0 25 7 4.624 5.456
1.4 0 25 7 5.875 6.932
1.7 0 25 7 14.453 17.06
0 0.001 25 7 0.0018 0.002
0 0.005 25 7 0.0061 0.007
0 0.01 25 7 0.0316 0.037
0 0.05 25 7 0.3752 0.443
0 0.1 25 7 0.0296 0.035
0 0.15 25 7 0.0154 0.018
0.6 0 25 3 0.584 0.694
0.6 0 25 5 0.481 0.568
0.6 0 25 7 0.475 0.560
0.6 0 25 9 0.015 0.017
0.6 0 25 11 0.012 0.014
0.6 0 25 13 0.010 0.013
0.6 0 25 7 0.475 0.561
0.6 0 35 7 0.496 0.589
0.6 0 50 7 0.512 0.604
0.6 0 60 7 0.534 0.630
0.6 0 70 7 1.633 1.927
0.6 0 80 7 2.875 3.392
表1  在各种条件的溶液中超级13Cr极化曲线拟合结果
Corrosion factors Yi Y0
Cl- concentration S2- concentration Temperature pH value Corrosion rate
0.1983 0 0.7792 0.9655 0.0125
0.4959 0 0.7792 0.9655 0.0846
1.1901 0 0.7792 0.9655 0.3342
1.686 0 0.7792 0.9655 3.2506
2.7769 0 0.7792 0.9655 4.13
3.3719 0 0.7792 0.9655 10.1641
0 0.0759 0.7792 0.9655 0.0012
0 0.3797 0.7792 0.9655 0.0042
0 0.7595 0.7792 0.9655 0.022
0 3.7975 0.7792 0.9655 0.2639
0 7.5949 0.7792 0.9655 0.0209
0 11.3924 0.7792 0.9655 0.0107
1.1901 0 0.7792 0.4138 0.4135
1.1901 0 0.7792 0.6879 0.3384
1.1901 0 0.7792 0.9655 0.3336
1.1901 0 0.7792 1.2414 0.0101
1.1901 0 0.7792 1.5172 0.0083
1.1901 0 0.7792 1.7931 0.0077
1.1901 0 0.7792 0.9655 0.3342
1.1901 0 1.0909 0.9655 0.3509
1.1901 0 1.5584 0.9655 0.3599
1.1901 0 1.8701 0.9655 0.3753
1.1901 0 2.1818 0.9655 1.1481
1.1901 0 2.4935 0.9655 2.0209
表2  均值化处理结果
[1] Wang F, Wei C Y, Huang T J, et al.Effect of H2S partial pressure on stress corrosion cracking behavior of 13Cr stainless steel in annulus environment around CO2 injection well[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 46(王峰, 韦春艳, 黄天杰等. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34: 46)
[2] Li Z L, Cheng Y P, Bi H S, et al.Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields[J]. CIESC J., 2014, 65: 406(李自力, 程远鹏, 毕海胜等. 油气田CO2/H2S共存腐蚀与缓蚀技术研究进展[J]. 化工学报, 2014, 65: 406
[3] Zhao Y F, Wang J L, Zuo Y, et al.Research development of corrosion of steels in CO2/H2S-containing media in oil & gas fields[J]. Corros. Prot. Petrochem. Ind., 2010, 27: 1(赵永峰, 王吉连, 左禹等. 在含CO2/H2S介质中油气田用钢的腐蚀研究进展[J]. 石油化工腐蚀与防护, 2010, 27: 1)
[4] Xu C M.Study on localized corrosion characteristics and mechanisms for typical petrochemical equipments [D]. Xi'an: Xi'an Jiaotong University, 2007(胥聪敏. 典型石化设备局部腐蚀特征及腐蚀机理研究 [D]. 西安: 西安交通大学, 2007)
[5] Li X Y, Fan C H, Wu Q L, et al.Effect of chloride and temperature on corrosion behavior of PH13-8Mo in acidic environments[J]. Mater. Sci. Technol., 2017, 25(6): 89(李雪莹, 范春华, 吴钱林等. 酸性溶液中Cl-含量和温度对PH13-8Mo腐蚀行为的影响[J]. 材料科学与工艺, 2017, 25(6): 89)
[6] Lv X H, Zhao G X, Zhang J B, et al.Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 207(吕祥鸿, 赵国仙, 张建兵等. 超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为[J]. 北京科技大学学报, 2010, 32: 207)
[7] Lin G F, Song W L, Wang Y M, et al.Comparative study on the corrosion performance of two kinds of HP13Cr110 Steel[J]. Equip. Environ. Eng., 2010, 7(6): 183(林冠发, 宋文磊, 王咏梅等. 两种HP13Cr110钢腐蚀性能对比研究[J]. 装备环境工程, 2010, 7(6): 183)
[8] Yin Z F, Zhao W Z, Tian W, et al.Pitting behavior on super 13Cr stainless steel in 3.5%NaCl solution in the presence of acetic acid[J]. J. Solid State Electrochem., 2009, 13: 1291
[9] Zhu X R, Zhang Q F.Grey relationship analysis for main environment factors of steel corrosion in sea water[J]. Mar. Sci., 2000, 34(5): 37(朱相荣, 张启富. 海水中钢铁腐蚀与环境因素的灰关联分析[J]. 海洋科学, 2000, 34(5): 37)
[10] Qu C T, Lu H X, Bu S F.Gray relational analysis for main factors of corrosion in Wen-1 sewage treatment plant[J]. Corros. Sci. Prot. Technol., 2005, 17: 198(屈撑囤, 卢会霞, 卜绍峰. 灰关联分析法研究中原油田文一污水的腐蚀因素[J]. 腐蚀科学与防护技术, 2005, 17: 198)
[11] Kou J, Liang F C, Chen J.Corrosion and Protection of Oil and Gas Pipelines [M]. Beijing: SINOPEC Group Press, 2008: 12(寇杰, 梁法春, 陈婧. 油气管道腐蚀与防护 [M]. 北京: 中国石化出版社, 2008: 12)
[12] Yan Y.Research and application of clustering method based on grey incidence analysis [D]. Chongqing: Chongqing University of Posts and Telecommunications, 2016(闫一. 基于灰关联分析的聚类方法研究及应用 [D]. 重庆: 重庆邮电大学, 2016)
[13] Liang P, Du C W, Li X G, et al.Grey relational space analysis of effect of environmental factors on corrosion resistance of X70 pipeline steel in Yingtan soil simulated solution[J]. Corros. Prot., 2009, 30: 231(梁平, 杜翠薇, 李晓刚等. X70管线钢在鹰潭土壤模拟溶液中腐蚀因素灰关联分析[J]. 腐蚀与防护, 2009, 30: 231)
[14] Zhang Y F, Chen X, He C, et al.Gray relationship analysis methods for effect of crude oil properties on corrosion behavior of 16Mn steel[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 43(张艳飞, 陈旭, 何川等. 原油性质对16Mn钢腐蚀行为影响灰关联分析[J]. 中国腐蚀与防护学报, 2015, 35: 43)
[15] Zhu M, Yu Y, Zhang H H.Corrosion behavior of L245 steel in simulated oilfield produced water at different temperatures[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 300(朱明, 余勇, 张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37: 300)
[16] Liu R K, Li J K, Liu Z Y, et al.Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel[J]. Int. J. Mater. Res., 2015, 106: 608
[17] Shi Y J, Shao C Y, Li Y Y, et al.Effect of temperature on corrosion behavior of steels in high sulfur and high acid crude oil[J]. Hot Work. Technol., 2014, 43(2): 16(施宜君, 邵春宇, 李莹莹等. 温度对钢材在高硫高酸值原油中腐蚀行为的影响[J]. 热加工工艺, 2014, 43(2): 16)
[18] Li Y F, Tao C C, Lin C Y, et al.Application of improved analytic hierarchy process in corrosion rate forecasting of water supplying pipe[J]. J. Shenyang Jianzhu Univ.(Nat. Sci.), 2010, 26: 729(李亚峰, 陶翠翠, 林长宇等. 改进层次分析法在给水管道腐蚀速率预测中的应用[J]. 沈阳建筑大学学报(自然科学版), 2010, 26: 729)
[1] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[3] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[4] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[5] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[6] 朱明,余勇,张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[7] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[8] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[9] 王春霞,陈敬平,张晓红,王赪胤. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[10] 张玉成,鞠新华,庞晓露,高克玮. O2浓度对钢在超临界CO2中腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 220-226.
[11] 周年光, 查方林, 冯兵, 何铁祥. 电化学频率调制技术在Q235钢/NaCl腐蚀体系中的应用[J]. 中国腐蚀与防护学报, 2014, 34(5): 445-450.
[12] 刘智勇, 贾静焕, 杜翠薇, 李晓刚, 王丽颖. X80和X52钢在模拟海水环境中的腐蚀行为与规律[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.
[13] 朱敏, 杜翠薇, 李晓刚, 刘智勇, 王丽叶. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 225-230.
[14] 周京, 冯芝勇, 张金玲, 王社斌. 稀土Nd含量对AM60镁合金耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
[15] 彭欣, 王佳, 王金龙, 山川, 贾红刚, 刘在健, 王海杰. 海水中带锈Q235钢腐蚀电化学参数测定[J]. 中国腐蚀与防护学报, 2013, 33(6): 449-454.