Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (1): 18-28    DOI: 10.11902/1005.4537.2017.194
  研究报告 本期目录 | 过刊浏览 |
X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析
王帅星1,2,杜楠1(),刘道新2,肖金华1,邓丹萍1
1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
2. 西北工业大学 腐蚀与防护研究所 西安 710072
Corrosion Kinetics and the Relevance Analysis for X80 Steel in a Simulated Acidic Soil Solution and Outdoor Red Soil
Shuaixing WANG1,2,Nan DU1(),Daoxin LIU2,Jinhua XIAO1,Danping DENG1
1. National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2. Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(20303 KB)   HTML
摘要: 

通过腐蚀失重、SEM和XRD等方法获得了X80钢在酸性红壤模拟液中的腐蚀演变特征;同时,利用精密电阻法原位、连续监测了X80钢在南昌红壤中的长期腐蚀动力学规律;基于室内模拟液腐蚀和室外红壤暴露实验结果,评价了二者之间的相关性,建立了腐蚀寿命预测模型。结果表明,酸性红壤模拟液及南昌红壤中,X80钢的腐蚀失重量与腐蚀时间之间均符合幂函数变化规律 (△W=Atn)。通过定性比较和灰关联法分析表明,室内模拟液腐蚀实验与室外红壤暴露实验在腐蚀动力学、腐蚀形貌及腐蚀产物组成上均具有良好的一致性;二者的腐蚀动力学关联度为0.6233。基于室内腐蚀实验建立的GM(1,1) 灰色模型可以对室外红壤暴露实验结果进行一定程度的预测,相对误差小于20%。

关键词 X80钢腐蚀动力学红壤模拟液室外红壤灰关联    
Abstract

The evolution characteristics of corrosion-kinetics,-morphology and -products for X80 steel in a simulated acidic soil solution was acquired by means of weight loss measurement, SEM and XRD. Besides, the long-term corrosion-kinetics of X80 steel, which outdoor burried in real red soil at Nanchang district, was monitored in-situ by using a precise electrical resistance (ER) test system. The relevance between the simulated corrosion experiment and the outdoor soil exposure test were evaluated by using qualitative comparison and grey quantitative analysis. The results show that the corrosion weight loss of X80 steel in the simulated solution as a function of exposure time could be calculated using power function (△W=Atn). For the outdoor exposure in red soil, the corrosion kinetics of X80 steel was similar to that of the simulated test. It had good relevance between the indoor corrosion experiment and the outdoor soil exposure test, regardless of the corrosion kinetics, corrosion morphology and the composition of corrosion products. The correlation degree in the corrosion kinetics for the two methods was about 0.6233. Besides, GM(1,1) corrosion kinetic data prediction model had been established basing on indoor immersing experiment. After verification, the relative error of GM(1,1) prediction model was less than 20%, which indicated that GM(1,1) model could be used to predict the outdoor soil exposure test result.

Key wordsX80 steel    corrosion dynamic    acidic soil simulated solution    outdoor red soil    grey quantitative analysis
收稿日期: 2017-11-19     
ZTFLH:  TG179  
基金资助:国家自然科学基金(51161021)
通讯作者: 杜楠     E-mail: d_unan@sina.com
Corresponding author: Nan DU     E-mail: d_unan@sina.com
作者简介: 王帅星,男,1985年生,博士

引用本文:

王帅星,杜楠,刘道新,肖金华,邓丹萍. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
Shuaixing WANG, Nan DU, Daoxin LIU, Jinhua XIAO, Danping DENG. Corrosion Kinetics and the Relevance Analysis for X80 Steel in a Simulated Acidic Soil Solution and Outdoor Red Soil. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 18-28.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.194      或      https://www.jcscp.org/CN/Y2019/V39/I1/18

图1  X80管线钢显微组织的光学显微镜形貌及SEM形貌
图2  电阻法测试用棒状X80钢试样
图3  X80钢在酸性红壤模拟液 (pH=4.0~4.5) 中腐蚀64 d的失重曲线
图4  X80钢在pH=4.0~4.5的酸性红壤模拟液中腐蚀不同时间的表面3D形貌
图5  X80钢在pH值为4.0~4.5的红壤模拟液中腐蚀不同时间的表面SEM形貌
图6  X80钢在pH值为4.0~4.5的酸性红壤模拟液中腐蚀不同时间的XRD谱
图7  X80钢在南昌酸性红壤中埋样12个月的电阻变化曲线与埋样48个月的腐蚀速率
图8  X80钢在南昌红壤中腐蚀不同时间的表面3D形貌
图9  X80钢在南昌红壤中腐蚀不同时间后的表面SEM形貌
图10  X80钢在南昌红壤中腐蚀不同时间后表面XRD谱
图11  X80钢在南昌酸性红壤中埋样4 a的截面SEM像及XRD谱
Indoor corrosion dataOutdoor corrosion data
Time / dW / g·cm-2Dynamic equationTime / monthW / g·cm-2Dynamic equation
10.0022W=0.00053 t1.86310.0019W=0.00065 t2.1247
40.005330.0054
80.027460.0305
120.0540W=0.0051 t0.943690.0513W=0.0070 t0.9096
160.0703120.0673
320.1076W=0.0158 t0.5511240.1024W=0.0181 t0.5456
480.1308360.1282
640.1613480.1587
表1  室内外腐蚀动力学数据对比
Raw dataInitialization data0iξ01(p=0.5)γ01
X0(k)X1(k)X'0(k)X'1(k)
0.00190.00221.0001.00001γ01=0.6233
0.00540.00532.8422.4090.4330.9218
0.03050.027416.05212.4553.5970.5634
0.05130.054027.00024.5452.4550.6752
0.06730.070335.42131.9553.4660.5956
0.10240.107653.89448.9094.9850.5105
0.12820.130867.47459.4558.0190.3862
0.15870.161383.52673.31810.2080.3333
表2  灰色关联法计算结果
Indoor corrosion dataFitting data X(0)Verfication resultsOutdoor corrosion dataRelative error
Time / dRaw data X(0)Time / monthActual data
40.00530.0053

S1=0.05048

S2=0.0079

C=0.1565

P=1.0

30.00541.85%
80.02740.035860.030517.37%
120.05400.049190.05134.29%
160.07030.0664120.06734.31%
320.10760.0902240.102411.91%
480.13080.1223360.12824.60%
640.16130.1658480.15874.47%
表3  GM(1,1)灰色预测模型计算结果与室外红壤实验值对比
[1] Niu J, Qi L H, Liu Y L, et al. Tempering microstructure and mechanical properties of pipeline steel X80 [J]. Trans. Nonferrous Met. Soc. China, 2009, 19 (Suppl.3): S573
[2] Borovikov A V. Production of straight-seam large-diameter pipes made of steel of strength class X80 [J]. Metallurgist, 2003, 47: 415
[3] Yan M C, Sun C, Dong J H, et al. Electrochemical investigation on steel corrosion in iron-rich clay [J]. Corros. Sci., 2015, 97: 62
[4] Cole I S, Marney D. The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils [J]. Corros. Sci., 2012, 56: 5
[5] Liu Z Y, Li X G, Cheng Y F. Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization [J]. Electrochim. Acta, 2012, 60: 259
[6] Liang P, Li X G, Du C W, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution [J]. Mater. Des., 2009, 30: 1712
[7] Yan M C, Sun C, Xu J, Ke W. Anoxic corrosion behavior of pipeline steel in acidic soils [J]. Ind. Eng. Chem. Res., 2014, 53: 17615
[8] Yin G Q, Zhang L H, Chang S W, et al. A brief introduction of methods used in soil corrosion researches [J]. Corros. Sci. Prot. Technol., 2004, 16: 367
[8] 尹桂勤, 张莉华, 常守文等. 土壤腐蚀研究方法概述 [J]. 腐蚀科学与防护技术, 2004, 16: 367
[9] Fitzgerald J H. Evaluating soil corrosivity-then and now [J]. Mater. Performance, 1993, 32: 17
[10] Huang J Y, Qiu Y B, Guo X P. Analysis of electrochemical noise of X70 steel in Ku'erle soil by cluster analysis [J]. Mater. Corros., 2009, 60: 527
[11] Huang J Y, Qiu Y B, Guo X P. Cluster analysis of electrochemical noise for X70 steel in Ku'erle soil [J].
[11] Chin J.. Soc. Corros. Prot., 2009, 29: 453
[11] 黄家怿, 邱于兵, 郭兴蓬. 采用聚类分析研究X70钢在库尔勒土壤中初期电化学噪声特征 [J]. 中国腐蚀与防护学报, 2009, 29: 453
[12] Yan M C, Sun C, Xu J, et al. Electrochemical behavior of API X80 steel in acidic soils from Southeast China [J]. Int.
[12] J. Electrochem. Sci., 2015, 10: 1762
[13] Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection [J]. Corros. Sci., 2012, 55: 246
[14] Li S Y, Jung S, Park K W, et al. Kinetic study on corrosion of steel in soil environments using electrical resistance sensor technique [J]. Mater. Chem. Phys., 2007, 103: 9
[15] Wang S X, Liu D X, Du N, et al. Analysis of the long-term corrosion behavior of X80 pipeline steel in acidic red soil using electrical resistance test technique [J]. Adv. Mater. Sci. Eng., 2015, 2015: 931761
[16] Valor A, Alfonso L, Caleyo F, et al. The negative binomial distribution as a model for external corrosion defect counts in buried pipelines [J]. Corros. Sci., 2015, 101: 114
[17] Cai J P, Cottis R A, Lyon S B. Phenomenological modelling of atmospheric corrosion using an artificial neural network [J]. Corros. Sci., 1999, 41: 2001
[18] Bassam A, Ortega-Toledo D, Hernandez J A, et al. Artificial neural network for the evaluation of CO2 corrosion in a pipeline steel [J]. J. Solid State Electr., 2008, 13: 773
[19] Wang H T, Han E-H, Ke W. Gray model and gray relation analysis for atmospheric corrosion of carbon steel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 278
[19] 王海涛, 韩恩厚, 柯伟. 碳钢、低合金钢大气腐蚀的灰色模型预测及灰色关联分析 [J]. 腐蚀科学与防护技术, 2006, 18: 278
[20] Liu S M, Zhang G Y. An improved grey model for corrosion prediction of tank bottom [J]. Prot. Met., 2007, 43: 407
[21] Caleyo F, Velázquez J C, Valor A, et al. Probability distribution of pitting corrosion depth and rate in underground pipelines: A Monte Carlo study [J]. Corros. Sci., 2009, 51: 1925
[22] Liu Z Y, Li X G, Zhang Y R, et al. Relationship between electrochemical characteristics and SCC of X70 pipeline steel in an acidic soil simulated solution [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 22: 58
[23] Li X G, Dong C F, Xiao K, et al. Initial behavior and mechanism of atmospheric corrosion for metal [M]. Beijing: Science Press, 2009
[23] 李晓刚, 董超芳, 肖葵等. 金属大气腐蚀初期行为与机理 [M]. 北京: 科学出版社, 2009
[24] Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2010, 52: 1796
[25] Liu S Y, Wang S X, Du N, et al. Electrochemical behavior of X80 pipeline steel in simulated red soil solutions with different pH [J].
[25] Chin J.. Soc. Corros. Prot., 2015, 35: 21
[25] 刘淑云, 王帅星, 杜楠等. X80管线钢在不同pH值红壤模拟溶液中的腐蚀电化学行为 [J]. 中国腐蚀与防护学报, 2015, 35: 21
[26] Du C W, Zhao T L, Liu Z Y, et al. Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution [J]. Int.
[26] Min J.. Met. Mater., 2016, 23: 176
[27] Nie X H, Li X G, Du C W, et al. Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy [J]. J. Raman Spectrosc., 2009, 40: 76
[28] Wang S R, Du C W, Li X G, et al. Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil [J]. Prog. Nat. Sci., 2015, 25: 242
[29] Wang X, Xiao K, Cheng X Q, et al. Corrosion prediction model of Q235 steel in polluted marine atmospheric environment [J]. J. Mater. Eng., 2017, 45: 51
[29] 王旭, 肖葵, 程学群等. Q235钢的污染海洋大气环境腐蚀寿命预测模型 [J]. 材料工程, 2017, 45: 51
[1] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[2] 王帅星, 杜楠, 刘道新, 肖金华, 邓丹萍. 模拟酸雨作用下红壤含水量对X80钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(2): 147-157.
[3] 戴芸,刘胜胆,邓运来,张新明. 7020铝合金在3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[4] 郭望,赵卫民,张体明,杜天海,王勇. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[5] 张艳飞, 陈旭, 何川, 陈宇, 王冠夫, 张玉刚. 原油性质对16Mn钢腐蚀行为影响灰关联分析[J]. 中国腐蚀与防护学报, 2015, 35(1): 43-48.
[6] 刘智勇, 贾静焕, 杜翠薇, 李晓刚, 王丽颖. X80和X52钢在模拟海水环境中的腐蚀行为与规律[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.
[7] 朱敏, 杜翠薇, 李晓刚, 刘智勇, 王丽叶. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 225-230.
[8] 梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
[9] 黄峰;曲炎淼;邓照军;刘静;郑超超;李晓刚. 不同组织X80钢在高pH土壤模拟溶液中的点蚀电化学行为[J]. 中国腐蚀与防护学报, 2010, 30(1): 29-34.
[10] 朱相荣; 张启富 . 灰关联分析法探讨环境因素与海水腐蚀性的关系[J]. 中国腐蚀与防护学报, 2000, 20(1): 29-34 .