Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (6): 511-516    DOI: 10.11902/1005.4537.2017.188
  本期目录 | 过刊浏览 |
核电材料高温高压水缺口疲劳性能研究现状与进展
廖家鹏1,2,吴欣强1()
1. 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室辽宁省核电材料安全与评价技术重点实验室 沈阳 110016
2. 中车株洲电力机车有限公司 大功率交流传动电力机车系统集成国家重点实验室 株洲 412001
Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water
Jiapeng LIAO1,2,Xinqiang WU1()
1. Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration, CRRC Zhuzhou Locomotive Co., Ltd., Zhuzhou 412001, China
全文: PDF(533 KB)   HTML
摘要: 

综述了轻水堆核电站用结构材料的缺口疲劳问题研究现状,分析了材料、应力、环境和缺口几何形状等影响因素,讨论了核电材料在高温高压水中缺口疲劳裂纹萌生及裂纹扩展的可能机理,指出了当前研究中存在的问题及进一步的研究方向。

关键词 腐蚀疲劳轻水堆核电站缺口效应    
Abstract

The effect of notch geometry on fatigue performance of structural materials for light water reactor plants was reviewed. Four factors affecting the fatigue behavior of notched specimen were taken into account, including characteristics of materials, stress state, corrosive environments and notch geometry. The possible mechanisms of fatigue crack initiation and propagation of notched specimen for nuclear-grade materials in high temperature high pressure water have been discussed. The coming possible research topics and directions are also proposed.

Key wordscorrosion fatigue    light water reactor plant    notch effects
收稿日期: 2017-11-15     
ZTFLH:  TG172.8  
基金资助:国家科技重大专项专题(2017ZX06002003-004-002);中国科学院院重点部署项目(ZDRW-CN-2017-1);中国科学院金属研究所创新基金(SCJJ-2013-ZD-02)
通讯作者: 吴欣强     E-mail: xqwu@imr.ac.cn
Corresponding author: Xinqiang WU     E-mail: xqwu@imr.ac.cn
作者简介: 廖家鹏,男,1990年生,博士生

引用本文:

廖家鹏,吴欣强. 核电材料高温高压水缺口疲劳性能研究现状与进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
Jiapeng LIAO, Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 511-516.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.188      或      https://www.jcscp.org/CN/Y2018/V38/I6/511

ClassificationTypical partConstruction material
Bolt holePressure vessel headStainless steel (SS)
Welding discontinuitiesPressure vessel, SG tubes, pressurizer, small-diameter pipelinesAlloy 690/52 or 152
Primary loop circulation piping system, reactor internalsSS/Ni-based alloy
Pressure vessel, SG safe-end welds, pressurizerSS/ Ni-based alloy/Low alloy steel
Pressure vesselButt welding of low alloy steel
表1  LWR核电站涉及的几何不连续典型部位及其结构材料
Influencing factorTesting environment
Material: Composition, microstructure, inclusions, surface stateRT air, LWR water
Notch geometry: Notch type, notch angle, notch depth, notch root radiusRT air, LWR water
Stress state: Stress amplitude, stress rate, wave formRT air, LWR water
Environment: Temperature, pressure, pH, DO, DHLWR water
表2  LWR水环境中和室温空气中缺口疲劳性能的主要影响因素
[1] Chopra O K,Shack W J.Effect of LWR coolant environments on the fatigue life of reactor materials[R].NUREG/CR-6909, ANL-06/08,2007
[2] Environmental fatigue evaluation method for nuclear power plants[R].JNES-SS-1005,2011
[3] Jeong I S,Kim W J,Kim T R,et al.Strain rate change from 0.04 to 0.004%/s in an environmental fatigue test of CF8M cast stainless steel[J].Nucl. Eng. Technol,2011,43:83
[4] Wu X,Katada Y.Influence of cyclic strain rate on environmentally assisted cracking behavior of pressure vessel steel in high-temperature water[J].Mater. Sci. Eng,2004,A379:58
[5] Tan J,Wu X,Han E-H,et al.The effect of dissolved oxygen on fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water[J].Corros. Sci.,2016,102:394
[6] Wu X,Katada Y.Inclusion-involved fatigue cracking in high temperature water[J].Mater. Corros.,2005,56:305
[7] Katada Y,Sato S.Effect of temperature on corrosion fatigue behavior of low alloy pressure vessel steels in high temperature water[A].Proceedings of the Eighth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C].Amelia Island,1997
[8] Scott P M,Truswell A E,Druce S G.Corrosion fatigue of pressure-vessel steels in PWR environments-influence of steel sulfur-content[J].Corrosion,1984,40:350
[9] Wu X,Han E-H,Ke W,et al.Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water[J].Nucl. Eng. Des.,2007,237:1452
[10] Kuhn P,Hardrath H F.An engineering method for estimating notch-size effect in fatigue tests on steel[R].NACA TN2085, Washington,1952
[11] Peterson R E.Metal Fatigue: Notch Ssensitivity[M].New York:Mc Graw-Hill,1959
[12] Manson S S.Fatigue: A complex subject-some simple approximations[A].SEAE Annual Meeting[C].Cleveland,1964
[13] Coffin L F J.A study of the effects of cyclic thermal stresses on a ductile metal[J].Trans. ASME,1954,76:931
[14] Neuber H.Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law[J].ASME J. Appl. Mech.,1961,28:544
[15] Molski K,Glinka G.A method of elastic-plastic stress and strain calculation at a notch root[J].Mater. Sci. Eng,1981,50:93
[16] Liu L J.On the notch effects of high strength bolt in grid structures with bolt-sphere joints[J].J. Xiamen Univ,2005,44:783
[16] 刘丽君.钢网架螺栓球节点用高强螺栓的缺口效应分析[J].厦门大学学报,2005,44:783
[17] Xi W,Yao W X.Method for fatigue life prediction of notched specimen considering size effect[J]. J Nanjing. U. Aeronaut. Astronautics,2013,45:497
[17] 奚蔚,姚卫星.一种考虑尺寸效应的缺口件疲劳寿命预测方法[J].南京航空航天大学学报,2013,45:497
[18] Feng X F,Ye X B,Ye D Y,et al.Notch fatigue strength of 2024-T351 aluminum alloy in moist air[J]. J Mater. Sci. Eng,2014,32:417
[18] 冯先锋,叶序斌,叶笃毅等.潮湿空气环境下2024-T351铝合金的缺口疲劳强度[J].材料科学与工程学报,2014,32:417
[19] Sakane M,Itoh T,Susaki T,et al.Life prediction for notched components in nonproportional low cycle fatigue-Experiment and FEM analysis[A].Pressure Vessel and Piping Codes and Standards[C].San Diego,2004
[20] Taylor D,Wang G.The validation of some methods of notch fatigue analysis[J].Fatigue Fract. Eng. M.,2000,23:387
[21] Li J,Wu X Q,Han E-H,et al.A review of corrosion failure of welded structural metallic materials for light water reactor plant[J].Corros. Sci. Prot. Technol.,2014,26:1
[21] 李江,吴欣强,韩恩厚等.核电焊接结构材料腐蚀失效研究现状及进展[J].腐蚀科学与防护技术,2014,26:1
[22] H?nninen H.Material development in new reactor designs- Gen III and SCWR concept, 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT)[R].Dipoli Congress Centre, Espoo, Finland, August 9-14,2009
[23] Sakaguchi K,Asada Y,Itatani M,et al.Evaluation of environmental effects on the fatigue of notched specimen of austenitic stainless steel using modified rate approach method[A].Pressure Vessel and Piping Codes and Standards[C].San Diego,2004
[24] Itatani M,Saito T,Sakaguchi K,et al.Evaluation for environment al fatigue of notched specimen of Ni-base alloy[A].2007 ASME Pressure Vessels and Piping Division Conference[C].San Antonio,2007
[25] Itatani M,Iida K,Ogawa K.Effect of loading rate on the fatigue strength of notched carbon steel in high temperature water[A].Pressure Vessel and Piping Codes and Standards,Vessel and Piping Codes and Standards[C].San Diego,1998
[26] Kim Y H,Fine M E,Mura T.Fatigue crack initiation theory[A].AIME 109th Annual Meeting[C].Las Vegas,1980
[27] Gomez F J,Elices M.A fracture criterion for blunted V-notched samples[J].Int. J. Fracture,2004,127:239
[28] Gomez F J,Elices M.A fracture criterion for sharp V-notched samples[J].Int. J. Fracture,2003,123:163
[29] Lazzarin P,Filippi S.A generalized stress intensity factor to be applied to rounded V-shaped notches[J].Int. J. Solid. Struct.,2006,43:2461
[30] Berto F,Lazzarin P.Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches[J].Mater. Sci. Eng.,2014,R75:1
[31] Lazzarin P,Tovo R,Meneghettit G.Fatigue crack initiation and propagation phases near notches in metals with low notch sensitivity[J]. Int. J. Fatigue,1997,19:647
[32] N-A Noda,Takase Y.Stress concentration formula useful for all notch shape in a round bar (comparison between torsion, tension and bending)[J].Int. J. Fatigue,2006,28:151
[33] Pilkey W D,Pilkey D F.Peterson's Stress Concentration Factors[M].3rd Ed. Hoboken, New Jersey:John Wiley & Sons, Inc,2008
[34] Boukharouba T,Tamine T,Niu L,et al.The use of notch stress intensity factor as a fatigue crack initiation parameter[J].Eng. Fract. Mech.,1995,52:503
[35] Sakane M,Zhang S,Kim T.Notch effect on multiaxial low cycle fatigue[J].Int. J. Fatigue,2011,33:959
[36] Sakane M,Ohnarni M.Notch effect in low-cycle fatigue at elevated temperatures-Life prediction from crack initiation and propagation considerations[J]. J Eng. Mater. Technol.,1986,108:279
[37] Kunihiro I,Katsuyuki S,Shuzo U,et al.Compilation of low-cycle fatigue data of reactor structural materials[R].JAERI-M, Japan,1992
[38] Xu S,Wu X Q,Han E-H,et al.Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless steel in high temperature water[J].Mater. Sci. Eng,2008,A490:16
[39] Meng F,Wang J,Han E-H,et al.Effects of scratching on corrosion and stress corrosion cracking of Alloy 690TT at 58 °C and 330 °C[J].Corros. Sci.,2009,51:2761
[40] Xu S,Wu X Q,Han E-H,et al.Effects of dynamic strain aging on mechanical properties of SA508 class 3 reactor pressure vessel steel[J]. J. Mater. Sci.,2009,44:2882
[41] Tan J,Wu X,Han E-H,et al.Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water[J].Corros. Sci.,2014,88:349
[42] Tan J,Wu X,Han E-H,et al.Corrosion fatigue behavior of Alloy 690 steam generator tube in borated and lithiated high temperature water[J].Corros. Sci.,2014,89:203
[43] Seifert H P,Ritter S,Leber H J.Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions[J].Corros. Sci.,2012,55:61
[44] Hirose Y,Mura T.Crack nucleation and propagation of corrosion fatigue in high-strength steel[J].Eng. Fract. Mech.,1985,22:859
[45] Umeda H,Sakane M,Ohmani M.Notch root displacement (NRD) approach to predict crack initiation life of notched specimen in high-temperature multiaxial low cycle fatigue[J]. J Eng. Mater. Technol.,1990,112:429
[46] Umeda H,Ohnami M.Notch effect in biaxial low cycle fatigue at elevated temperatures[J].ASME,1989,111:286
[47] Hanninen H,Torronen K,Kemppainen M,et al.On the mechanisms of environment sensitive cyclic crack-growth of nuclear-reactor pressure-vessel steels[J].Corros. Sci.,1983,23:663
[48] Ford F P.Quantitative prediction of environmentally assisted cracking[J].Corros. Sci.,1996,52:375
[49] Wang R.Corrosion Fatigue of Metal Materials[M].Xi'an:Northwestern Polytechnical University Press Co. Ltd.,2001
[49] 王荣.金属材料的腐蚀疲劳[M].西安:西北工业大学出版社,2001)
[1] 刘晓强,徐雪莲,谭季波,王媛,吴欣强,郑宇礼,孟凡江,韩恩厚. 反应堆冷却剂环境对690合金传热管疲劳性能影响研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[2] 梁瑞, 张新燕, 李淑欣, 姜峰, 陈帅甫. 半椭球蚀坑对圆棒应力集中的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[3] 谭季波,吴欣强,韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[4] 徐松;吴欣强;韩恩厚;柯伟. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 119-123.
[5] 周华茂 王俭秋 张波 韩恩厚 臧启山. 轧制AZ31B镁合金腐蚀疲劳过程中的声发射信号分析[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
[6] 张强 . 304不锈钢微尺度试样的腐蚀疲劳性能[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .
[7] 张正贵 . 高强度铝合金构件腐蚀疲劳失效分析[J]. 中国腐蚀与防护学报, 2008, 28(1): 48-52 .
[8] 常红; 韩恩厚; 王俭秋; 柯伟 . 飞机蒙皮涂层对LY12CZ铝合金腐蚀疲劳寿命的影响[J]. 中国腐蚀与防护学报, 2006, 26(1): 34-36 .
[9] S.A.Shipilov . 腐蚀疲劳裂纹扩展的机理[J]. 中国腐蚀与防护学报, 2004, 24(6): 321-333 .
[10] 王荣;郑修麟. 变幅载荷下铝合金的腐蚀疲劳裂纹起始寿命[J]. 中国腐蚀与防护学报, 1998, 18(3): 178-186.
[11] 王荣. 腐蚀疲劳裂纹扩展的断裂模型[J]. 中国腐蚀与防护学报, 1998, 18(2): 87-94.
[12] 傅朝阳;郑家燊. 钻井液中碳钢的氢扩散和腐蚀疲劳行为[J]. 中国腐蚀与防护学报, 1997, 17(4): 263-268.
[13] 高桦;曹卫杰;应虹. MST法研究CF裂纹扩展行为[J]. 中国腐蚀与防护学报, 1997, 17(3): 221-226.
[14] 魏学军;李劲;柯伟. A537钢在阴极极化及自腐蚀条件下单次拉伸超载特性[J]. 中国腐蚀与防护学报, 1997, 17(2): 99-105.
[15] 谢建辉;吴荫顺;朱日彰. 316L不锈钢在模拟人体液内腐蚀疲劳裂纹萌生和扩展过程中应力的作用[J]. 中国腐蚀与防护学报, 1997, 17(1): 31-35.