Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (6): 551-557    DOI: 10.11902/1005.4537.2017.187
  本期目录 | 过刊浏览 |
阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响
张思齐,杜楠(),王梅丰,王帅星,赵晴
1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution
Siqi ZHANG,Nan DU(),Meifeng WANG,Shuaixing WANG,Qing ZHAO
1. National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(3564 KB)   HTML
摘要: 

采用浸泡实验、动电位极化、电化学阻抗谱和三维视频显微技术研究了阴极面积对3.5% (质量分数) NaCl溶液中304不锈钢稳态点蚀生长速率的影响,模拟了稳态点蚀的生长方式。结果表明,当NaCl溶液中的外加阴极存在时,由于外加阴极的耗氧反应,阳极电位升高,导致金属溶解速率加快。在阴阳极面积比小于64时,阳极溶解速率随着外加阴极面积的增加而增加;在阴阳极面积比达到并超过64时,阳极腐蚀速率增量趋于平缓,约为无外加阴极时的2.2倍。外加阴极存在时,FeCl3溶液中的析氢反应速率也得到提升。当304不锈钢在3.5%NaCl溶液中自然产生点蚀时,蚀孔外阴极可提高蚀孔底部金属的溶解速率。

关键词 稳态点蚀蚀孔模拟阴极反应304不锈钢    
Abstract

The effect of cathode area on stable pitting grows of 304 stainless steel in 3.5% (mass fraction) NaCl solution was investigated by means of immersion test, electrochemical impendence spectroscope (EIS), potentiodynamic polarization and three-dimensional video microscope. The growth of stable pitting was then simulated. The results showed that when an impressed cathode was present in the solution, the dissolution rate of anode was dramatically enhanced: as the area radio of cathode to anode enlarged from 1 to 64, the corrosion increased, however, when the radio reached 64 and above, the corrosion rate tended to be stable. At this time the current density is 2.2 times of that without additional cathode. With the presence of an impressed cathode,the rate of hydrogen evolution reaction could increase in FeCl3solution. The presence of an impressed cathode could also increase the anodic dissolution rate of the bottom of a naturally grown pit on 304 stainless in 3.5%NaCl solution according to the results of simulated experiment.

Key wordsstable pitting    pit stimulation    cathodic reaction    304 stainless steel
收稿日期: 2017-11-13     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51561024)
通讯作者: 杜楠     E-mail: d_nan@sina.com
Corresponding author: Nan DU     E-mail: d_nan@sina.com
作者简介: 张思齐,男,1992年生,硕士生

引用本文:

张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
Siqi ZHANG, Nan DU, Meifeng WANG, Shuaixing WANG, Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 551-557.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.187      或      https://www.jcscp.org/CN/Y2018/V38/I6/551

图1  实验装置图
图2  304不锈钢试样浸泡在3.0 mol/L FeCl3溶液中不同时间的失重曲线
图3  不同阴阳极面积比的304不锈钢电极在FeCl3溶液中的极化曲线
Sc:SaEcorr/ mVIcorr/ mA?cm-2
0-23015.06
1-22018.63
2-21719.34
4-21323.63
8-20823.68
16-20225.31
32-19519.35
64-19033.63
128-18933.00
256-19034.98
表1  不同阴阳极面积比条件下极化曲线拟合参数值
图4  阴阳极面积比对FeCl3溶液中304不锈钢开路电位的影响
图5  阴阳极面积比对FeCl3溶液中304不锈钢自腐蚀电流密度的影响
Sc:SaSc/ cm2I/ mA?cm-2
00.000.00
10.780.13
21.570.27
43.140.56
86.281.12
1612.560.24
3225.124.47
6420.248.94
128100.4817.89
256200.9635.73
表2  外加不同面积阴极后理论极限电流密度增量
图6  不同阴阳极面积比下动电位极化后阳极腐蚀形貌
图7  不同阴阳极面积比下304不锈钢在FeCl3溶液中的电化学阻抗谱
图8  不同阴阳极面积比的电化学阻抗谱等效电路图
Sc:SaRsol/ ΩCdl/ μFRct/ ΩR1/ ΩnL/ HQ/ μF
00.39320.00054.7763.186---0.1956---
10.40100.00314.5970.6470.7729---0.143
20.43370.00113.3051.0570.8859---0.097
40.41900.00122.1541.0800.9852---0.243
80.41360.00521.8380.4440.9087---0.555
160.42000.02581.3390.2350.8229---1.251
320.40271.00500.9640.3910.9896---4.786
640.41420.00470.6230.402---0.0129---
1280.40020.00770.6080.396---0.0228---
2560.42150.00960.6200.337---0.0206---
表3  不同阴阳极面积比下的电化学阻抗谱拟合数据
[1] Ye C,Du N,Zhao Q,et al.Progress in research of pitting corrosion behavior and research methods of stainless steels[J].Corros. Prot.,2014,35:271
[1] 叶超,杜楠,赵晴等.不锈钢点蚀行为及研究方法的进展[J].腐蚀与防护,2014,35:271
[2] Yan M G,Wu X R,Zhu Z S.Recent progress and prospects for aeronautical material technologies[J].Aeron. Manuf. Technol.,2003, (12):19
[2] 颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望[J].航空制造技术,2003, (12):19
[3] Huang G Q.Corrosion of stainless steels in tidal zone-exposure test for 16 years[J]. J
[3] Chin.Soc.Corros. Prot.,2002,22:330
[3] 黄桂桥.不锈钢海水潮汐区16年腐蚀行为[J].中国腐蚀与防护学报,2002,22:330
[4] Karki V,Singh M.Investigation of corrosion mechanism in type 304 stainless steel under different corrosive environments: A SIMS study[J].Int. J. Mass Spectrom.,2017,421:51
[5] Zamaletdinov I I.Pitting on passive metals[J].Prot. Met.,2007,43:470
[6] Cheng C Q,KlinkenbergLI,Ise Y,et al.Pitting corrosion of sensitised type 304 stainless steel under wet–dry cycling condition[J].Corros. Sci.,2017,118:217
[7] Du N,Tian W M,Zhao Q,et al.Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5%NaCl solution[J].Acta Metall. Sin.,2012,48:807
[7] 杜楠,田文明,赵晴等.304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理[J].金属学报,2012,48:807
[8] Tian W M,Li S M,Du N,et al.Effects of applied potential on stable pitting of 304 stainlesssteel[J].Corros. Sci.,2015,93:242
[9] Davydov A D.Analysis of pitting corrosion rate[J].Russ.J.Electrochem.,2008,44:835
[10] Szklarska-Smialowska Z.Mechanism of pit nucleation by electrical breakdown of the passive film[J].Corros. Sci.,2002,44:1143
[11] Burstein G T,Liu C,Souto R M,et al.Origins of pitting corrosion[J].Corros. Eng. Sci. Technol.,2004,39:25
[12] Huang S X,Du N,Zhao Q,et al.Fe3+hydrolysis and its impact on the pitting behavior of 304 stainless steel[J].Corros. Prot.,2016,37:453
[12] 黄世新,杜楠,赵晴等.Fe3+水解及其对304不锈钢点蚀行为的影响[J].腐蚀与防护,2016,37:453
[13] Liu D X.Corrosion and Protection of Material[M].Xi'an:Northwestern Polytechnical University Press,2006
[13] 刘道新.材料的腐蚀与防护[M].西安:西北工业大学出版社,2006)
[14] Liang C H,Gao Y.Influence of sensibilization heat treatment on corrosion resistance of 304 stainless steel[J].Chem. Eng. Mach.,1995,22:87
[14] 梁成浩,高扬.304不锈钢敏化热处理对耐蚀性的影响[J].化工机械,1995,22:87
[15] Ryan M P,Williams D E,Chater R J,et al.Why stainless steel corrodes[J].Nature,2002,415:770
[16] Wu D R.A Manual of Chemical Process Design (Top Volume)[M].2nd Ed. Beijing:Chemistry Industry Press,1996:1041
[16] 吴德荣.化工工艺设计手册 (上册)[M]. 第2>版.北京:化学工业出版社,1996:1041
[17] Ai Y J,Du N,Zhao Q,et al.Effect of temperature on initiation of metastable pits and geometric features of stable pits for 304 stainless steel[J]. J Chin. Soc. Corros. Prot.,2017,37:135
[17] 艾莹珺,杜楠,赵晴等.温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J].中国腐蚀与防护学报,2017,37:135
[18] Zhang S H,Tan Y,Liang K X.In-situimpedance investigation of 304 stainless steel between pit growth and repassivation state[J]. J Chin. Soc. Corros. Prot.,2011,31:130
[18] 张胜寒,檀玉,梁可心.电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究[J].中国腐蚀与防护学报,2011,31:130
[19] Zhao W M,Wang Y.EIS study on the effects of heat treatment on corrosion behavior of nickel base alloy coating on low carbon steel[J].Acta Metall. Sin.,2008,44:1125
[19] 赵卫民,王勇.电化学阻抗谱法研究热处理对低碳钢镍基合金涂层腐蚀行为的影响[J].金属学报,2008,44:1125
[1] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[3] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[4] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[5] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[6] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[7] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[8] 沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
[9] 王永利,马利,熊良银,刘实. 夹杂对自来水环境下304不锈钢腐蚀及金属离子溶出的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 328-334.
[10] 方玉荣,付朝阳. 酸性FeCl3溶液中304不锈钢的超声腐蚀和缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
[11] 叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[12] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[13] 田文明,杜楠,赵晴. 电子散斑干涉技术测量304不锈钢点蚀电位 的方法研究[J]. 中国腐蚀与防护学报, 2012, 32(5): 431-436.
[14] 李季,赵林,李博文,郑丽群,韩恩厚. 304不锈钢点蚀的电化学噪声特征[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240.
[15] 王洪芬,王志奇,洪海霞,陈守刚,尹衍升. 铈掺杂TiO2薄膜抗海水中硫酸盐还原菌的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2010, 30(6): 481-486.