Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (6): 523-532    DOI: 10.11902/1005.4537.2017.181
  本期目录 | 过刊浏览 |
咪唑啉类衍生物缓蚀性能研究
刘建国(),高歌,徐亚洲,李自力,季菀然
1. 中国石油大学 (华东) 储运与建筑工程学院 山东省油气储运安全省级重点实验室青岛市环海油气储运技术重点实验室 青岛 266580
Corrosion Inhibition Performance of Imidazoline Derivatives
Jianguo LIU(),Ge GAO,Yazhou XU,Zili LI,Wanran JI
1. Qingdao Key Laboratory of Circle Sea Oil & Gas Storage and Transportation Technology, Shandong Provincial Key Laboratory of Oil & Gas Storage and Transportation Safety, College of Pipeline and Civil Engineering, China University of Petroleum East China, Qingdao 266580, China
全文: PDF(20187 KB)   HTML
摘要: 

采用失重法、电化学极化法、电化学阻抗谱及表面分析来评价咪唑啉类缓蚀剂浓度、温度对缓蚀剂缓蚀效果影响的关联性,并分析了不同取代基对咪唑啉类缓蚀剂缓蚀性能的影响。结果表明,十六烷基咪唑啉对阴、阳极过程都有较好的抑制作用,尤其对阳极过程更加有效。浓度和温度对缓蚀剂缓蚀性能的影响是相互关联的。温度较低 (25 ℃) 或较高 (60 ℃) 时,缓蚀剂只有达到一定浓度才能获得较高的缓蚀率;当温度处于40~50 ℃时,较低浓度的缓蚀剂就能达到良好的缓蚀效果,且浓度继续增加,缓蚀率变化不大。取代基结构影响了缓蚀剂对腐蚀介质的阻碍程度。

关键词 咪唑啉类缓蚀剂失重法电化学法    
Abstract

The effect of inhibitor concentration and temperature on the effectiveness of inhibitors of imidazoline derivatives was studied by means of weight loss method, electrochemical measurement, and surface analysis, while the effect of different substituted groups on the inhibition performance of imidazoline inhibitors was also analyzed. The results show that the sixteen alkyl imidazoline has good inhibition effect on the anode and cathode processes, especially for the anode process. The influence of concentration and temperature on the inhibition performance of corrosion inhibitors is interrelated. At lower (25 ℃) or higher (60 ℃) temperatures, only high concentration of corrosion inhibitor can exhibit higher corrosion inhibition rate. At temperatures in the range 40~50 ℃, low concentration of corrosion inhibitor can reach a good corrosion inhibition rate, while the corrosion inhibition rate changes little when the concentration increases. The substituted groups, such as phenylpropionate, can degrade the corrosion inhibition performance of imidazoline inhibitors.

Key wordsimidazoline inhibitor    mass-loss method    electrochemical method
收稿日期: 2017-11-04     
ZTFLH:  TG174.42  
基金资助:中央高校基本科研业务费专项资金(16CX02037A);青岛市自主创新计划(15-9-1-70-jch)
通讯作者: 刘建国     E-mail: liujianguo@upc.edu.cn
Corresponding author: Jianguo LIU     E-mail: liujianguo@upc.edu.cn
作者简介: 刘建国,男,1983年生,博士,副教授

引用本文:

刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
Jianguo LIU, Ge GAO, Yazhou XU, Zili LI, Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 523-532.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.181      或      https://www.jcscp.org/CN/Y2018/V38/I6/523

图1  不同温度下3.5%NaCl溶液中不同浓度十六烷基咪唑啉对20#碳钢的缓蚀效率随缓蚀剂浓度的变化
图2  20#碳钢在不同温度含不同浓度十六烷基咪唑啉的3.5%NaCl溶液中浸泡7 d后的SEM形貌
Concentration / mg·L-1Ecorr/ mVIcorr/ μA·cm-2Ba/ mVBc/ mVfafcIE / %
0-728.3749.5872.101098.61---------
140-634.228.38427.16160.250.00470.078983.09
200-639.9110.3457.15260.490.01140.037279.14
300-645.152.7259.56223.380.01160.031694.51
600-617.772.4832.33119.210.00140.016694.98
表1  20#碳钢在25 ℃含有不同浓度十六烷基咪唑啉的3.5%NaCl溶液中的极化曲线拟合参数
Concentration / mg·L-1Ecorr/ mVIcorr/ μA·cm-2Ba/ mVBc/ mVfafcIE / %
0-728.3749.5872.101098.61---------
140-695.5420.8552.821727.270.33530.590257.94
200-698.0018.2455.341055.220.46840.761063.21
300-693.8919.2755.28586.150.25360.431861.13
600-682.6518.9433.10245.030.08150.255361.79
表2  20#碳钢在25 ℃含有不同浓度苯丙酸咪唑啉的3.5%NaCl溶液中的极化曲线拟合参数
图3  20#碳钢在25 ℃含有不同浓度十六烷基咪唑啉的3.5%NaCl溶液中的极化曲线
图4  20#碳钢在25 ℃含有不同浓度苯丙酸咪唑啉的3.5%NaCl溶液中的极化曲线
图5  25 ℃下20#钢在含不同缓蚀剂的3.5%NaCl溶液中的Nyquist图
图6  电化学阻抗谱拟合所用等效电路图
InhibitorConcentration / mg·L-1Rs/ Ω·cm2Y0/ μF·cm-2nRct/ kΩ·cm2L/ H·cm-2IE / %
Without---6.21472.10.79280.28031461---
Sixteen alkyl imidazoline1402.32787.30.75991.537---81.76
2004.63880.60.7934.187---93.30
3005.55277.20.73034.453---93.71
6005.42867.10.76324.324---93.51
Imidazoline phenylpropionate1402.5371930.76230.73811652062.02
2005.8711220.79360.8856882568.34
3003.8372070.75330.7627549063.25
6003.9372110.79960.8000831464.96
表3  25 ℃下20#钢在添加不同缓蚀剂的3.5%NaCl溶液中的电化学阻抗谱拟合结果
图7  3.5%NaCl溶液中不同浓度十六烷基咪唑啉对20#碳钢缓蚀率随温度的变化
图8  20#碳钢在不同温度下含有不同浓度十六烷基咪唑啉的3.5%NaCl溶液中的极化曲线
Concentration / mg·L-1Temperature / ℃Ecorr/ mVIcorr/ μA·cm-2Ba/ mVBc/ mVfafcIE / %
14025-634.2428.38431.33197.260.007420.0879683.09
30-639.91810.3453.62372.760.007080.0872585.98
40-645.1572.7251.87553.950.001730.0223996.36
50-617.77324.8063.89635.890.001240.0554584.74
60-654.44933.1576.46548.860.018330.1840881.54
20025-639.9183.127.15260.480.010350.0411479.14
30-659.897.2341.34352.310.025050.0927593.44
40-643.292.942.23445.120.009670.0369095.37
50-628.30614.539.17662.150.014210.1028395.66
60-631.84415.4221.15192.460.017490.0989396.76
30025-645.172.7259.56223.380.009510.0393194.51
30-698.142.3147.43121.890.015890.0341296.3
40-658.342.7655.22150.670.018240.0405095.6
50-626.80711.8730.64662.160.010450.0935994.26
60-645.42215.3923.36351.230.021180.1113093.78
60025-617.7732.4832.33119.210.000010.0244594.78
30-631.1013.53944.80533.890.000010.0329794.34
40-641.183.5655.51260.380.000010.0327695.32
50-653.0410.9535.65261.70.000060.0667595.17
60-647.1613.3524.76221.870.000110.0727696.54
表4  20#碳钢在不同温度下含有不同浓度十六烷基咪唑啉的3.5%NaCl溶液中的极化曲线拟合参数
图9  20#碳钢在不同温度下含有不同浓度十六烷基咪唑啉的3.5%NaCl溶液中的阻抗谱
图10  20#碳钢在不同温度含140 mg/L十六烷基咪唑啉的3.5%NaCl溶液中浸泡7 d后腐蚀形貌的SEM像
图11  20#碳钢在不同温度含300 mg/L十六烷基咪唑啉的3.5%NaCl溶液中浸泡7 d后腐蚀形貌的SEM像
图12  20#碳钢在不同温度含600 mg/L十六烷基咪唑啉的3.5%NaCl溶液中浸泡7 d后腐蚀形貌的SEM像
[1] Li Y T,Wang L Y,Shi D Q,et al.Research progress of imidazoline inhibitors in oil and gas fields[J].Mater. Prot.,2011,44(12):50
[1] 李言涛,王路遥,史德青等.油气田用咪唑啉缓蚀剂的研究进展[J].材料保护,2011,44(12):50
[2] Song S F,Guo Y Y.The research status and progress of imidazoline inhibitors[J].Guangdong Chem. Ind.,2016,43(22):91
[2] 宋绍富,郭银银.咪唑啉类缓蚀剂的研究现状及进展[J].广东化工,2016,43(22):91
[3] Liu R B.Study on synthesis and corrosion inhibition of imidazoline inhibitors[D].Dalian:Dalian University of Technology,2004
[3] 刘瑞斌.咪唑啉类缓蚀剂的合成与缓蚀性能研究[D].大连:大连理工大学,2004)
[4] Okafor P C,Liu X,Zheng Y G.Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution[J].Corros. Sci.,2009,51:761
[5] Liu Y C,Zhang B,Zhang Y L,et al.Electrochemical polarization study on crude oil pipeline corrosion by the produced water with high salinity[J].Eng. Fail. Anal.,2016,60:307
[6] Singh A K,Mohapatra S,Pani B.Corrosion inhibition effect of Aloe Vera gel: Gravimetric and electrochemical study[J]. J Ind. Eng. Chem.,2016,33:288
[7] Zhang Z H,Guo J B.Law of CO2corrosion of oil country tubular goods and the study of its progress at home and abroad[J].Baosteel Technol.,2000, (4):54
[7] 张忠铧,郭金宝.CO2对油气管材的腐蚀规律及国内外研究进展[J].宝钢技术,2000, (4):54
[8] Zhu L,Yu P,Luo Y B.Research progress in imidazoline as corrosion inhibitor[J].Mater. Prot.,2003,36(12):4
[8] 朱镭,于萍,罗运柏.咪唑啉缓蚀剂的研究与应用进展[J].材料保护,2003,36(12):4
[9] Mustafa A H,Ari-Wahjoedi B,Ismail M C.Inhibition of CO2corrosion of X52 steel by imidazoline-based inhibitor in high pressure CO2-water environment[J]. J Mater. Eng. Perform.,2013,22:1748
[10] Zhang H H,Pang X L,Gao K W.Localized CO2corrosion of carbon steel with different microstructures in brine solutions with an imidazoline-basedinhibitor[J].Appl. Surf. Sci.,2018,442:446
[11] Zhao J M,Zhao X,Jiang R J.Effect of double bonds in hydrophobic chains on corrosion inhibition performance of imidazoline derivates in dynamic H2S/CO2environment[J]. J Chin. Soc. Corros. Prot.,2015,35:505
[11] 赵景茂,赵雄,姜瑞景.在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J].中国腐蚀与防护学报,2015,35:505
[12] Zhao J M,Zhao Q F,Jiang R J.Relationship between structure of imidazoline derivates with corrosion inhibition performance in CO2/H2S environment[J]. J Chin. Soc. Corros. Prot.,2017,37:142
[12] 赵景茂,赵起锋,姜瑞景.咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J].中国腐蚀与防护学报,2017,37:142
[13] Lv Z F,Zhang O,Zhan F T,et al.Synthesis and anti-corrosion performance of environmentally friendly imidazoline corrosion inhibitor[J].Fine Spec. Chem.,2018,26(1):28
[13] 吕志凤,张倩,战风涛等.环境友好型咪唑啉缓蚀剂的合成及性能研究[J].精细与专用化学品,2018,26(1):28
[14] Su Y,Ma Z H.Synthesis and corrosion inhibition of a polymerized imidazoline corrosion inhibitor[J].Corros. Prot.,2017,38:185
[14] 苏毅,马增华.一种聚合咪唑啉缓蚀剂的合成及其缓蚀性能[J].腐蚀与防护,2017,38:185
[15] Han S H,Cen H Y,Chen Z Y,et al.Inhibition behavior of imidazoline inhibitor in corrosive medium containing crude oil and high-pressure CO2[J]. J Chin. Soc. Corros. Prot.,2017,37:221
[15] 韩帅豪,岑宏宇,陈振宇等.原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J].中国腐蚀与防护学报,2017,37:221
[16] Guo Y Y.Synthesis and reaction properties of oleic acid imidazoline inhibitors[D].Xi'an:Xi'an Shiyou University,2017
[16] 郭银银.油酸基咪唑啉缓蚀剂的合成及反应性能研究[D].西安:西安石油大学,2017)
[17] Liu H W,Xiong F P,Lv Y L,et al.CO2corrosion inhibition of carbon steel by dodecylamine under flow conditions[J]. J Chin. Soc. Corros. Prot.,2016,36:645
[17] 刘宏伟,熊福平,吕亚林等.动态条件下十二胺对Q235碳钢CO2腐蚀的缓蚀行为研究[J].中国腐蚀与防护学报,2016,36:645
[18] Wang B.Study on inhibition performance of imidazoline derivative inhibitor against CO2corrosion in oil andgas field[D].Qingdao:Ocean University of China,2011
[18] 王彬.油气田用抑制CO2腐蚀的咪唑啉类缓蚀剂的缓蚀行为研究[D].青岛:中国海洋大学,2011)
[19] Lu Z L.Studies of inhibition performance and adsorption behavior of inhibitors on carbon steel in near neutral CO2-saturated brine solution[D].Wuhan:Huazhong University of Science and Technology,2007
[19] 鲁照玲.近中性CO2饱和盐水溶液中缓蚀剂在碳钢表面吸附和缓蚀行为的研究[D].武汉:华中科技大学,2007)
[1] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[2] 马双忱, 焦坤灵, 张立男, 孙尧, 吴文龙, 张小霓. 高温气相条件下硫酸氢铵与硫酸铵对20#碳钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 605-612.
[3] 徐致孝,周和荣,姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[4] 马双忱,邓悦,吴文龙,檀玉,张立男,柴峰,孙盼盼,张小霓. SCR脱硝副产物硫酸氢铵对锅炉尾部金属材料的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 335-342.
[5] 周和荣 李晓刚 董超芳 马 坚 陆启凯 冯 皓. 铝合金在NaHSO3溶液中干湿周浸腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(6期): 345-350.
[6] 徐国荣; 周光喜; 易清风; 任凤莲 . 铝基体上电沉积聚苯胺膜及其耐蚀性[J]. 中国腐蚀与防护学报, 2008, 28(1): 11-15 .
[7] 刘钧泉; 涂小慧; 李卫; 齐健婷 . 热强碱中腐蚀测定方法的研究[J]. 中国腐蚀与防护学报, 2003, 23(2): 116-119 .