Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 502-510    DOI: 10.11902/1005.4537.2017.178
  研究报告 本期目录 | 过刊浏览 |
2A02铝合金在模拟海洋大气环境中的剥蚀行为研究
曹敏1,2, 刘莉1(), 余钟芬3, 李瑛1, 王福会1,3
1 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
3 东北大学材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
Exfoliation Corrosion Behavior of 2A02 Al-alloy in a Simulated Marine Atmospheric Environment
Min CAO1,2, Li LIU1(), Zhongfen YU3, Ying LI1, Fuhui WANG1,3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(8883 KB)   HTML
摘要: 

利用SEM,XPS,LSCM,TEM和EPMA等分析技术,探讨了2A02铝合金在60 ℃、72%RH和沉积4 mg/cm2 NaCl条件下的剥蚀行为。结果表明,2A02铝合金的剥蚀是从点蚀发展到晶间腐蚀,而后产生层状开裂与剥落。2A02铝合金内存在于晶界的第二相颗粒是初期发生点蚀的萌生位置,沿晶界快速扩散的Cl-是晶间腐蚀的促进因素。

关键词 2A02铝合金NaCl沉积模拟海洋大气剥落腐蚀    
Abstract

The exfoliation corrosion behavior of 2A02 Al-alloy plates in a simulated marine atmospheric environment was studied by means of weight loss measurement. Namely, the plates were covered with a deposit of 4 mg/cm2 solid NaCl and then tested at 60 ℃ in air with 72% humidity. The microstructure and corrosion products of the alloy were characterized by SEM, XPS, LSCM,TEM and EPMA etc. Results show that in the simulated marine atmospheric environment, the corrosion process of 2A02 Al-alloy experienced the following three successive stages, i.e. pitting corrosion, intergranular corrosion and exfoliation corrosion. It seems that the second phase particles, which situated at grain boundaries, may play a key role for the initiation of pitting corrosion, while the rapid diffusion of Cl- along grain boundaries may act as a promoting factor for intergranular corrosion.

Key words2A02 Al alloy    NaCl deposit    simulated marine atmosphere    exfoliation corrosion
收稿日期: 2017-11-02     
ZTFLH:  TG178  
基金资助:国家自然科学基金 (51622106)
作者简介:

作者简介 曹敏,女,1990年,博士生

引用本文:

曹敏, 刘莉, 余钟芬, 李瑛, 王福会. 2A02铝合金在模拟海洋大气环境中的剥蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
Min CAO, Li LIU, Zhongfen YU, Ying LI, Fuhui WANG. Exfoliation Corrosion Behavior of 2A02 Al-alloy in a Simulated Marine Atmospheric Environment. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 502-510.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.178      或      https://www.jcscp.org/CN/Y2018/V38/I5/502

图1  2A02铝合金板材沿轧制方向的金相形貌及其组织结构
图2  在60 ℃、沉积4 mg/cm2 NaCl、72%RH相对湿度环境中2A02 铝合金的腐蚀增重随时间的变化曲线
Position Content / % Na Mg Al Cl Cu
A Mass fraction --- 1.51 94.31 --- 4.18
Atomic fraction --- 1.73 96.46 --- 1.81
B Mass fraction --- 1.64 78.52 --- 19.84
Atomic fraction --- 2.05 88.46 --- 9.49
C Mass fraction 8.99 --- 74.46 2.44 14.11
Atomic fraction 11.36 --- 80.17 2.02 6.45
D Mass fraction 2.52 1.12 92.50 --- 3.86
Atomic fraction 3.01 1.26 94.06 --- 1.67
E Mass fraction 7.52 --- 90.21 2.27 ---
Atomic fraction 8.74 --- 89.55 1.71 ---
F Mass fraction 36.30 --- 18.62 45.08 ---
Atomic fraction 44.60 --- 19.49 35.92 ---
G Mass fraction 17.02 --- --- 82.98 ---
Atomic fraction 24.03 --- --- 75.97 ---
表1  2A02 铝合金在60 ℃、72%RH和沉积4 mg/cm2 NaCl环境中腐蚀不同时间的EDS分析结果
图3  2A02 铝合金在60 ℃、72%RH和沉积4 mg/cm2 NaCl环境中腐蚀不同时间的表面形貌
图4  2A02铝合金在60 ℃、72%RH和沉积4 mg/cm2 NaCl环境中腐蚀不同时间后的截面形貌
图5  2A02铝合金在60 ℃、72%RH和沉积盐4 mg/cm2环境中腐蚀不同时间且去除表面腐蚀产物后的表面微观形貌和相应的点蚀坑深度
图6  2A02铝合金在60 ℃、72%RH和沉积4 mg/cm2 NaCl环境中腐蚀200 h后的截面形貌
图7  2A02铝合金在60 ℃、72%RH和沉积4 mg/cm2 NaCl环境中腐蚀200 h后的截面EPMA图谱
Position Mg Al Si Cl Fe Ca
A 5.35 84.46 6.15 0 0 4.04
B 6.02 65.01 4.97 0.09 5.38 18.53
表2  图8c中A和B点的EDS分析结果
图8  2A02铝合金在60 ℃、72%RH和沉积4 mg/cm2 NaCl环境中腐蚀200 h且去除表面腐蚀产物后基体TEM形貌
图9  2A02铝合金在60 ℃、72%RH和沉积4 mg/cm2 NaCl环境中腐蚀200 h后粉末状腐蚀产物的XPS谱
Corrosion product ρ / kgm-3 V / cm3mol-1
Al 2.7×103 10
Al2O3 3.97×103 25.7
Al(OH)3 2.42×103 32.2
AlCl3 2.44×103 55.9
表3  各物质的密度和摩尔体积
[1] Szklarska-Smialowska Z.Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743
[2] Nakazato R Z, Codaro E N, Horovistiz A L, et al.A metallurgical study of aluminium alloys used as aircraft components[J]. Prakt. Metallogr., 2001, 38A(2): 74
[3] Ezuber H, El-Houd A, El-Shawesh F.A study on the corrosion behavior of aluminum alloys in seawater[J]. Mater. Des., 2008, 29: 801
[4] Gudi? S, Smoljko I, Kli?ki? M.Electrochemical behaviour of aluminium alloys containing indium and tin in NaCl solution[J]. Mater. Chem. Phys., 2010, 121: 561
[5] Fan L, Cai J P, Zhang Q.Corrosion behavior of LY12 aluminum alloy with cyclic immersion corrosion test[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 215(范林, 蔡健平, 张琦. LY12铝合金在周浸试验中的腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29: 215)
[6] Zhu H B, Huang Y P.The anticorrosion to steel structure in marine atmosphere[J]. Total Corros. Control, 2003, 17(4): 26(朱惠斌, 黄燕萍, 海洋大气环境中钢铁表面的防腐蚀[J]. 全面腐蚀控制, 2003, 17(4): 26)
[7] Hou J, Zhang P H, Guo W M.Study on corrosion of aluminum alloys for ship applications in marine environment[J]. Equip. Environ. Eng., 2015, 12(2): 59(侯健, 张彭辉, 郭为民. 船用铝合金在海洋环境中的腐蚀研究[J]. 装备环境工程, 2015, 12(2): 59)
[8] Guillaumin V, Mankowski G.Localized corrosion of 6056 T6 aluminium alloy in chloride media[J]. Corros. Sci., 2000, 42: 105
[9] Buchheit R C, Moran J P, Stoner G E.Electrochemical behavior of the T1(Al2CuLi) intermetallic compound and its role in localized corrosion of Al-2%Li-3%Cu alloys[J]. Corrosion, 1994, 50: 120
[10] Buchheit R G, Wall F D, Stoner G E, et al.Anodic dissolution-based mechanism for the rapid cracking, preexposure phenomenon demonstrated by aluminum-lithium-copper alloys[J]. Corrosion, 1995, 51: 417
[11] Buchheit R G Jr, Moran J P, Stoner G E. Localized corrosion behavior of alloy 2090-the role of microstructural heterogeneity[J]. Corrosion, 1990, 46: 610
[12] Shaffer I S, Sebastion J C, Rosenfeld M S, et al.Corrosion and fatigue studies of extruded 7075-T6 Spar Caps[J]. J. Mater., 1968, 3(2): 400
[13] Robinson M J, Jackson N C.Exfoliation corrosion of high strength Al-Cu-Mg alloys: Effect of grain structure[J]. Br. Corros. J., 1999,34: 45
[14] Kelly D J, Robinson M J.Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090[J]. Corrosion, 1993, 49: 787
[15] Galvele J R,De Micheli S M.Mechanism of intergranular corrosion of Al-Cu alloys[J]. Corros. Sci., 1970, 10: 795
[16] Shao M H, Fu Y, Hu R G, et al.A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique[J]. Mater. Sci. Eng., 2003, A344: 323
[17] Zhu D Q, Van Ooij W J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in neutral sodium chloride solution. Part 1: corrosion of AA 2024-T3[J]. Corros. Sci., 2003, 45: 2163
[18] Fan L, Liu L, Cao M, et al.Corrosion behavior of Ti60 alloy under a solid NaCl deposit in wet oxygen flow at 600 ℃[J]. Sci. Rep., 2016, 6: 29019
[19] Fan L, Liu L, Yu Z F, et al.Corrosion behavior of pure Ti under a solid NaCl deposit in a wet oxygen flow at 600 ℃[J]. Metals, 2016, (6): 72
[20] Cao M, Liu L, Fan L, et al.Influence of temperature on corrosion behavior of 2A02 Al alloy in marine atmospheric environments[J]. Materials, 2018, 11: 235
[21] Wang B B, Wang Z Y, Han W, et al.Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in Western China[J]. Corros. Sci., 2012, 59: 63
[22] Li T, Li X G, Dong C F, et al.Characterization of atmospheric corrosion of 2A12 aluminum alloy in tropical marine environment[J]. J. Mater. Eng. Perform., 2010, 19: 591
[1] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[6] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[7] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[8] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[9] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[10] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[11] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[12] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[13] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[14] 赵苇杭, 王浩伟, 蔡光义, 董泽华. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[15] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.