Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (3): 241-247    DOI: 10.11902/1005.4537.2017.174
  研究报告 本期目录 | 过刊浏览 |
中性盐雾环境中DC06超深冲钢的腐蚀行为研究
姚望1(), 周和荣1, 肖葵2, 刘鹏洋1, 但佳永1, 吴润1
1 武汉科技大学材料与冶金学院 武汉 430081
2 北京科技大学 腐蚀与防护教育部重点实验室 北京 100083
Corrosion Behavior of DC06 Extra Deep Drawing Cold Rolled Steel in Neutral Salt Spray Test
Wang YAO1(), Herong ZHOU1, Kui XIAO2, Pengyang LIU1, Jiayong DAN1, Run WU1
1 School of Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Key Laboratory of Corrosionan Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(6765 KB)   HTML
摘要: 

采用宏观形貌观察,SEM,XRD和EIS等方法研究了汽车材料DC06超深冲冷轧钢在中性盐雾环境中的腐蚀行为,并分析了其腐蚀机制。结果表明,在中性盐雾实验过程中,DC06超深冲冷轧钢随实验时间的延长,试样表面的腐蚀产物不断增多,腐蚀产物颜色由最初的棕红色变为黑褐色,其表面形貌由针状团簇向棉团状转变;腐蚀产物厚度不断增加,截面有较多的横向及纵向裂纹,腐蚀产物呈现分层且与基材的结合不紧密;腐蚀产物含有Fe3O4,α-FeOOH和γ-FeOOH,主要为Fe3O4;EIS解析结果显示双电层电阻随实验时间的延长不断降低,其界面腐蚀速率呈增加趋势,且双电层电阻数值较小,腐蚀产物对材料的保护作用不明显。

关键词 中性盐雾超深冲冷轧钢电化学阻抗腐蚀层保护性SEM    
Abstract

The corrosion behavior of the extra deep drawing cold rolled sheet DC06 was assessed by means of neutral slat spray test, electrochemical impedance (EIS) measurement, macro photography, SEM and XRD. It follows that during the neutral slat spray test, the thickness of the corrosion products had increased significantly with the increasing time, and the color of the corrosion products changed from the original brown red to dark brown, while the surface morphology of the corrosion products also changed from needle-like clumps to cotton-like clumps. The corrosion products composed mainly of Fe3O4 plus α-FeOOH and γ-FeOOH. The electrical resistance of the electric double layer is decreasing with the test time. The interface corrosion rate increases and double layer resistance value is small. So that the protective effect of corrosion products is not obvious for the substrate steel.

Key wordsneutral slat spray test condition    extra deep drawing cold rolled sheet    electrochemical impedance    corrosion layer protection    SEM
收稿日期: 2017-10-24     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金 (50971048) 和科技部科技基础条件平台建设专项
作者简介:

作者简介 姚望,男,1991年生,硕士生

引用本文:

姚望, 周和荣, 肖葵, 刘鹏洋, 但佳永, 吴润. 中性盐雾环境中DC06超深冲钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
Wang YAO, Herong ZHOU, Kui XIAO, Pengyang LIU, Jiayong DAN, Run WU. Corrosion Behavior of DC06 Extra Deep Drawing Cold Rolled Steel in Neutral Salt Spray Test. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 241-247.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.174      或      https://www.jcscp.org/CN/Y2018/V38/I3/241

图1  DC06冷轧板在中性盐雾实验不同时间后的宏观表面形貌
图2  DC06冷轧板在中性盐雾实验后腐蚀产物的微观形貌
图3  DC06冷轧板在中性盐雾实验后的截面形貌图
图4  DC06冷轧板经中性盐雾实验1200 h后表面腐蚀产物的XRD谱
图5  DC06冷轧板中性盐雾实验不同时间的EIS测试结果
图6  DC06冷轧板的阻抗等效电路图
Time / h Rs/ / Ω·cm2 Q1 / μF·cm-2 n1 Rr / Ω·cm2 Q2 n2 Rct / Ω·cm2 W / 10-3 Ω·cm2
24 2.037 1.9×10-4 0.882 1.519 1.26×10-2 0.554 634.5 1.792
48 2.023 2.0×10-4 0.585 0.744 1.56×10-2 0.548 224.4 1.507
120 2.037 1.7×10-4 0.576 0.992 2.28×10-2 0.800 224.4 1.715
240 3.015 1.5×10-4 0.672 1.034 2.58×10-2 0.800 131.0 1.081
720 3.422 7.0×10-5 0.800 7.248 9.60×10-3 0.515 220.9 0.551
1200 6.014 5.0×10-4 0.584 6.801 1.06×10-2 0.800 101.4 0.762
表1  等效电路拟合元件值
[1] Tang Y, Song A M.Effect of salt spray conditions on test results[J]. Microelectronics, 2009, 39: 289(唐毅, 宋爱民. 盐雾试验条件对试验结果的影响[J]. 微电子学, 2009, 39: 289)
[2] Ke W.Current investigation into the corrosion cost in China[J]. Total Corros. Control, 2003, 17(1): 1(柯伟. 中国工业与自然环境腐蚀调查[J]. 全面腐蚀控制, 2003, 17(1): 1)
[3] Kang H J.Research and development of extra-deep drawing DC06[D]. Shenyang: Northeastern University, 2009(康海军. 汽车用超深冲钢DC06的研制开发 [D]. 沈阳: 东北大学, 2009)
[4] Li G Y, Zhou J Z.Development and application of high grade auto sheet steels[J]. J. Iron Steel Res., 2012, 24(suppl.): 1(李光瀛, 周积智. 高等级汽车板的开发与应用[J]. 钢铁研究学报, 2012, 24(增刊): 1)
[5] Zhang J B, Yang X J.Corrosion behavior of high-strength steel WHT1300HF in neutral salt-mist environment[J]. J. Lanzhou Univ. Technol., 2016, 42(5): 10(张建斌, 杨小娟. WHT1300HF高强钢在中性盐雾中的腐蚀行为[J]. 兰州理工大学学报, 2016, 42(5): 10)
[6] Hao X L, Liu J H, Li S M, et al.Effect of neutral salt spray precorrosion on fatigue life of AF1410 steel[J]. J. Aeronaut. Mater., 2010, 30(1): 67(郝雪龙, 刘建华, 李松梅等. 中性盐雾预腐蚀对AF1410高强钢疲劳寿命的影响[J]. 航空材料学报, 2010, 30(1): 67)
[7] Yu M, Dong Y, Wang R Y, et al.Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment[J]. J. Mater. Eng., 2012, 40(1): 42(于美, 董宇, 王瑞阳等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为[J]. 材料工程, 2012, 40(1): 42)
[8] Liu J H, Shang H B, Tao B W, et al.Corrosion behavior of high strength steels 0Cr18Ni5 and AF1410[J]. J. Mater. Eng., 2004, 32(8): 29(刘建华, 尚海波, 陶斌武等. 0Cr18Ni5和AF1410高强度钢的腐蚀行为研究[J]. 材料工程, 2004, 32(8): 29)
[9] Liu J H, Wen C, Yu M, et al.Initial corrosion processes and mechanism of 23Co14Ni12Cr3Mo ultra-high strength steel in salt spray environment[J]. Int. J. Electrochem. Sci., 2013, 8: 4085
[10] Zhou K S, Deng C M, Liu M, et al.Characterizations of fatigue and salt spray corrosion resistance of HVAF sprayed WC-17Co and WC-10Co4Cr coatings on the substrate of 300M steel[J]. Rare Met. Mater. Eng., 2009, 38: 671(周克崧, 邓春明, 刘敏等. 300M钢基体上高速火焰喷涂WC-17Co和WC-10Co4Cr涂层的疲劳和抗盐雾腐蚀性能[J]. 稀有金属材料与工程, 2009, 38: 671)
[11] Xu S H, Wang H, Su L.Degradation law of mechanical properties of Q235 steel plate in neutral salt spray corrosion environment[J]. Mater. Mech. Eng., 2016, 40(5): 86(徐善华, 王皓, 苏磊. 中性盐雾腐蚀环境中Q235钢板力学性能的退化规律[J]. 机械工程材料, 2016, 40(5): 86)
[12] Wu Q G, Chen X D, Fan Z C, et al.Corrosion fatigue behavior of FV520B steel in water and salt-spray environments[J]. Eng. Fail. Anal., 2017, 79: 422
[13] Zeng R C, Zhang J, Huang W J, et al.Review of studies on corrosion of magnesium alloys[J]. Trans. Nonferrous Met. Soc. China, 2006, 16(suppl.): S763
[14] Kong D J, Wu Y Z, Long D.Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions[J]. J. Iron Steel Res. Int., 2013, 20: 40
[15] Zhu Y H, Zhuang J, Yu Y S, et al.Research on anti-corrosion property of rare earth inhibitor for X70 steel[J]. J. Rare Earths, 2013, 31: 734
[16] Qin L Y, Lian J S, Jiang Q.Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 82
[17] Wang L W, Li X G, Du C W, et al.In-situ corrosion characterization of API X80 steel and its corresponding HAZ microstructures in an acidic environment[J]. J. Iron Steel Res. Int., 2015, 22: 135
[18] Thee C, Hao L, Dong J H, et al.Numerical approach for atmospheric corrosion monitoring based on EIS of a weathering steel[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 261
[19] Ma Y T, Li Y, Wang F H.Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51: 997
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[7] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[8] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[10] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[11] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[12] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[13] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[14] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[15] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.