Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (3): 248-254    DOI: 10.11902/1005.4537.2017.171
  研究报告 本期目录 | 过刊浏览 |
烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响
韦鉴峰1, 付洪田1,2, 王廷勇1,2(), 许实2, 王辉2, 王海涛2
1 洛阳船舶材料研究所 洛阳 471000
2 青岛双瑞海洋环境工程股份有限公司 青岛 266101
Effect of Sintering Temperature on Properties of Graphene-containing Ti/IrTaSnSb-G Metal Oxide Anodes
Jianfeng WEI1, Hongtian FU1,2, Tingyong WANG1,2(), Shi XU2, Hui WANG2, Haitao WANG2
1 Luoyang Ship Material Research Institute, Luoyang 471000, China
2 Sunrui Marine Environment Engineering Co., Ltd, Qingdao 266101, China
全文: PDF(3468 KB)   HTML
摘要: 

采用热分解法制备了不同烧结温度的含石墨烯的Ti/IrTaSnSb金属氧化物阳极,测试了阳极在1.5% (质量分数) NaCl溶液中的电化学性能,并通过SEM及EDS进行了显微形貌分析,研究了烧结温度对阳极性能的影响。结果表明:在适宜的烧结温度下,石墨烯促进IrO2在阳极表面偏析,其晶粒结构主要呈枝状,并存在二次结晶现象,形成纳米针状结构,从而增大了阳极的活性表面积,提高了阳极的电催化活性;但烧结温度过高会导致石墨烯快速氧化分解,以及IrO2在阳极表面偏析减少。另外,随着烧结温度的升高,阳极的电催化活性升高;当烧结温度为460 ℃时,阳极的析氯活性最好,随后电催化活性逐渐降低。

关键词 石墨烯氧化物阳极烧结温度电催化活性    
Abstract

Ti/IrTaSnSb-G anodes were prepared by thermal decomposition at different sintering temperatures, and then characterized by means of SEM with EDS. The electrochemical performance of the anodes in 1.5% (mass fraction) NaCl solution was assessed and the effect of sintering temperature on the property of the anodes was further studied. Results show that graphene promotes the segregation of IrO2 with dendritic structure on the surface of anodes at the appropriate sintering temperature, and the secondary crystallization phenomenon was found to produce the nano-needle structure of IrO2, which increases the active surface areas and improves the electrocatalytic activity of the anodes. However, the much higher sintering temperature will lead to rapid oxidative decomposition of graphene, which results in the decrease of IrO2 on the anode surface. The study also finds that the electrocatalytic activity of the anodes increases firstly as sintering temperature rises and then the gradually becomes poor . Among others, the anode prepared by sintering at 460 ℃ presents the best performance.

Key wordsgraphene    oxide anode    sintering temperature    electrocatalytic activity
收稿日期: 2017-10-17     
ZTFLH:  TG146.3+4  
作者简介:

作者简介 韦鉴峰,男,1992年生,硕士生

引用本文:

韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
Jianfeng WEI, Hongtian FU, Tingyong WANG, Shi XU, Hui WANG, Haitao WANG. Effect of Sintering Temperature on Properties of Graphene-containing Ti/IrTaSnSb-G Metal Oxide Anodes. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 248-254.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.171      或      https://www.jcscp.org/CN/Y2018/V38/I3/248

图1  石墨烯的热重分析曲线
图2  不同温度烧结的Ti/IrTaSnSb和Ti/IrTaSnSb-G阳极表面形貌
图3  不同温度烧结的Ti/IrTaSnSb和Ti/IrTaSnSb-G阳极表面析出物的显微结构
图4  不同温度烧结的Ti/IrTaSnSb-G和Ti/IrTaSnSb阳极在1.5%NaCl溶液中的循环伏安曲线
图5  烧结温度对阳极伏安电量的影响
图6  不同阳极在1.5%NaCl溶液中的极化曲线
图7  阳极在5 ℃的3.5%NaCl溶液中的电流效率曲线
图8  阳极在15 ℃的1.5%NaCl溶液中的电流效率曲线
图9  Ti/IrTaSnSb-G阳极在1.5%NaCl溶液中的Nyquist图
Sinteringtemperature / ℃ RsΩ·cm2 QfΩ-1·cm-2·s-n RfΩ·cm2 n1 QdlΩ-1·cm-2·s-n RctΩ·cm2 n2
440 3.017 2.419×10-1 2.018 0.697 9.206 8.363 0.661
460 3.781 2.343×10-1 2.312 0.709 8.808 8.301 0.695
460 without graphene 3.541 1.572×10-2 4.018 0.678 6.028 15.905 0.684
480 3.083 1.054×10-1 3.824 0.666 6.322 14.394 0.744
500 3.676 1.434×10-2 4.166 0.747 5.906 16.428 0.675
520 3.974 1.046×10-2 5.192 0.706 3.863 20.442 0.638
表1  不同温度烧结的Ti/IrTaSnSb-G阳极电化学阻抗等效电路拟合值
[1] Stehouwer P P, Buma A, Peperzak L.A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide[J]. Environ. Technol., 2015, 36: 2094
[2] David M, Gollasch S, Penko L.Identification of ballast water discharge profiles of a port to enable effective ballast water management and environmental studies[J]. J. Sea Res., 2018, 133: 60
[3] Yan Z W, Zhao Y W, Zhang Z Z, et al.A study on the performance of IrO2-Ta2O5 coated anodes with surface treated Ti substrates[J]. Electrochim. Acta, 2015, 157: 345
[4] Alam R, Mobin M, Aslam J.Polypyrrole/graphene nanosheets/rare earth ions/dodecyl benzene sulfonic acid nanocomposite as a highly effective anticorrosive coating[J]. Surf. Coat. Technol., 2016, 307: 382
[5] Ardizzone S, Bianchi C L, Cappelletti G, et al.Composite ternary SnO2-IrO2-Ta2O5 oxide electrocatalysts[J]. J. Electroanal. Chem., 2006, 589: 160
[6] Wei Z Q, Wang D B, Kim S, et al.Nanoscale tunable reduction of graphene oxide for graphene electronics[J]. Science, 2010, 328: 1373
[7] Kumar G V, Agarwal S, Asif M, et al.Application of response surface methodology to optimize the adsorption performance of a magnetic graphene oxide nanocomposite adsorbent for removal of methadone from the environment[J]. J. Colloid Interface Sci., 2017, 497: 193
[8] Pocrifka L A, Gon?alves C, Grossi P, et al.Development of RuO2-TiO2 (70-30) mol% for pH measurements[J]. Sens. Actuator., 2006, 113B: 1012
[9] Hu J M, Sun X J, Hou Y Y, et al.Degradation characteristics of IrO2 type DSA in methanol aqueous solutions[J]. Electrochim. Acta, 2008, 53: 3127
[10] Xu L K, Xin Y L, Wang J T.A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared? with different methods[J]. Electrochim. Acta, 2009, 54: 1820
[11] Ge B Y, Wang H T, Liu G Z, et al.Property of Ti/IrO2-Ta2O5-SnO2-Sb2O5 oxide anodes for ballast water treatment system[J]. Mater. Prot., 2016, 49(4): 10(葛宝玉, 王海涛, 刘光洲等. 船舶压载水处理用Ti/IrO2-Ta2O5-SnO2-Sb2O5氧化物阳极的性能[J]. 材料保护, 2016, 49(4): 10)
[12] Huang Y T, Peng Q.Progress in the study of the Ti-based metal oxide anodes[J]. Total Corros. Control, 2006, 20(1): 10(黄运涛, 彭乔. 钛基金属氧化物阳极的研究进展[J]. 全面腐蚀控制, 2006, 20(1): 10)
[13] Xu S, Fu H T, Liu G Z, et al.Research on the influence of seawater temperature on the efficiency of production of chlorine by electrolysis[J]. J. Chem. Ind. Eng., 2013, 34(5): 57(许实, 付洪田, 刘光洲等. 海水温度对电解制氯效率的影响研究[J]. 化学工业与工程技术, 2013, 34(5): 57)
[14] Ning H L, Xin Y L, Xu L K, et al.Study on properties of IrO2-Ta2O5 coated titanium anodes modified with graphene[J]. Rare Met. Mater. Eng., 2016, 45: 946(宁慧利, 辛永磊, 许立坤等. 含石墨烯IrO2-Ta2O5涂层钛阳极性能改进研究[J]. 稀有金属材料与工程, 2016, 45: 946)
[15] Trieu V, Schley B, Natter H, et al.RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity[J]. Electrochim. Acta, 2012, 78: 188
[16] La?njevac U ?, Radmilovi? V V, Radmilovi? V R, et al.RuOx nanoparticles deposited on TiO2 nanotube arrays by ion-exchange method as electrocatalysts for the hydrogen evolution reaction in acid solution[J]. Electrochim. Acta, 2015, 168: 178
[17] Herrada R A, Medel A, Manríquez F, et al.Preparation of IrO2-Ta2O5|Ti electrodes by immersion, painting and electrophoretic deposition for the electrochemical removal of hydrocarbons from water[J]. J. Hazard. Mater., 2016, 319: 102
[18] Karlsson R K B, Hansen H A, Bligaard T, et al. Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution[J]. Electrochim. Acta, 2014, 146: 733
[19] Hsiao H Y, Chuang M C.Eliminating evolved oxygen through an electro-flocculation efficiently prompts stability and catalytic kinetics of an IrOxnH2O colloidal nanostructured electrode for water oxidation[J]. Electrochim. Acta, 2014, 137: 190
[20] Rosestolato D, Fregoni J, Ferro S, et al.Influence of the nature of the electrode material and process variables on the kinetics of the chlorine evolution reaction. The case of IrO2-based electrocatalysts[J]. Electrochim. Acta, 2014, 139: 180
[21] Xin Y L, Xu L K, Wang J T, et al.Effect of sintering temperature on microstructure and electrocatalytic properties of Ti/IrO2-Ta2O5 anodes by pechini method[J]. Rare Met. Mater. Eng., 2010, 39: 1903(辛永磊, 许立坤, 王均涛等. 烧结温度对Ti/IrO2-Ta2O5纳米氧化物阳极微观结构和电催化性能的影响[J]. 稀有金属材料与工程, 2010, 39: 1903)
[1] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[2] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.