Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 424-430    DOI: 10.11902/1005.4537.2017.164
  研究报告 本期目录 | 过刊浏览 |
预应变对DP600钢氢脆敏感性的影响
柯书忠, 刘静(), 黄峰, 王贞, 毕云杰
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
Effect of Pre-strain on Hydrogen Embrittlement Susceptibility of DP600 Steel
Shuzhong KE, Jing LIU(), Feng HUANG, Zhen WANG, Yunjie BI
State key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(6487 KB)   HTML
摘要: 

利用慢应变速率拉伸实验 (SSRT) 及双电解池渗氢实验,结合断口形貌观察和分析,探索了预应变对DP600钢氢脆敏感性的影响规律及机理。结果表明:在本实验预应变量范围内,预应变量小于15%时,随着预应变量的增大,DP600钢试样的氢脆敏感性不断增大,当预应变量达到15%以后,其氢脆敏感性基本趋于稳定。预应变增大了钢中的位错密度,使氢的有效扩散系数降低,有效捕获的氢量增加,从而使钢试样的氢脆敏感性增大;但当预应变量进一步增加至15%以上时,位错的相互缠结减缓氢的扩散和聚集速度,从而使试样的氢脆敏感性增加趋于平缓。

关键词 DP600钢预应变慢应变速率拉伸实验渗氢技术氢脆敏感性氢扩散    
Abstract

The effect of pre-strain on the hydrogen embrittlement (HE) susceptibility of DP600 steel was studied by means of slow strain-rate tensile (SSRT) test, electrochemical permeation technique and fractograph observation of fracture surface. The results indicate that the HE susceptibility of DP600 steel increases with the increasing pre-strain when the level of pre-strain is below 15%, and then tends to stable when the pre-strain exceeds 15%. The pre-strain increases dislocation density and the amount of effective hydrogen in the steel, but decreases the effective diffusivity (Deff) of hydrogen, so that the HE susceptibility increases. However, when the pre-strain increases to above 15%, the HE susceptibility gradually becomes stable due to the decrease of diffusion and aggregation of hydrogen, which resulted from the dislocation tangle.

Key wordsDP600 steel    pre-strain    SSRT    electrochemical permeation technique    HE susceptibility    diffusion of hydrogen
收稿日期: 2017-10-11     
ZTFLH:  TG171  
基金资助:国家自然科学基金 (51571154)
作者简介:

作者简介 柯书忠,男,1992年生,硕士生

引用本文:

柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
Shuzhong KE, Jing LIU, Feng HUANG, Zhen WANG, Yunjie BI. Effect of Pre-strain on Hydrogen Embrittlement Susceptibility of DP600 Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 424-430.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.164      或      https://www.jcscp.org/CN/Y2018/V38/I5/424

图1  拉伸样示意图
图2  试样在空气介质中拉伸的应力-应变曲线
图3  渗氢实验拉伸样尺寸示意图
图4  不同预应变下试样在空气和硫酸溶液中拉伸的应力-应变曲线
图5  不同预应变量下试样在空气 (HF) 和硫酸 (HC) 溶液中的延伸率、断面收缩率、氢脆指数与抗拉强度的变化曲线
图6  不同预应变试样的氢渗透曲线
Pre-strain Thickness / mm JL / 10-12 molcm-1s-1 Deff / 10-7 cm2s-1 C0 / 10-5 molcm-3
0% 1.70 9.319 5.91 1.577
10% 1.66 8.756 4.65 1.883
20% 1.52 7.466 2.23 3.348
表1  不同预应变量下氢的扩散动力学参数
图7  不同预应变下DP600钢的显微组织形貌及位错组态
图8  不同预应变下空拉试样的断口形貌
图9  硫酸介质中DP600钢拉伸试样的断口形貌
图10  不同预应变下硫酸介质中拉伸试样内部位错与氢原子分布示意图
[1] Calcagnotto M, Ponge D, Raabe D.On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels[J]. Metall. Mater. Trans., 2012, 43A: 37
[2] Senuma T.Physical metallurgy of modern high strength steel sheets[J]. ISIJ Int., 2001, 41: 520
[3] Loidl M, Kolk O, Veith S, et al.Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwiss. Werkstofftech., 2011, 42: 1105
[4] Hui W J, Li Y, Zhang Y J, et al.Effect of prestraining on hydrogen absorption and delayed fracture behavior of a medium-carbon TRIP steel[J]. Trans. Mater. Heat Treat., 2012, 33(6): 42惠卫军, 李阳, 张永健等. 预应变对中碳TRIP钢氢吸附及延迟断裂行为的影响[J]. 材料热处理学报, 2012, 33(6): 42)
[5] Chen J, Li C J, Zhang S H.Hydrogen embrittlement of cold drawn ferrite + matensite dual-phase steel[J]. J. Beijing Univ. Sci. Technol. Beijing, 1990, 12: 339陈俊, 李承基, 章守华. 冷拔变形(F+M)型双相钢的氢脆[J]. 北京科技大学学报, 1990, 12: 339)
[6] Takasugi T, Hanada S.The effect of pre-deformation on moisture-induced embrittlement of Ni3Al alloys[J]. Intermetallics, 1997, 5: 127
[7] Li X F, Zhang J, Wang Y F, et al.Effect of cathodic hydrogen-charging current density on mechanical properties of prestrained high strength steels[J]. Mater. Sci. Eng., 2015, A641: 45
[8] Laureys A, Van den Eeckhout E, Petrov R, et al. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging[J]. Acta Mater., 2017, 127: 192
[9] Liu Q, Atrens A.Reversible hydrogen trapping in a 3.5NiCrMoV medium strength steel[J]. Corros. Sci., 2015, 96: 112
[10] Deng L.The evolution of multi-phase structure of 500 MPa high strength Seismic reinforcement in tensile deformation [D]. Kunming: Kunming University of Science and Technology, 2013邓蕾. 500 MPa高强度抗震钢筋多相组织在拉伸变形过程中的演变规律 [D]. 昆明: 昆明理工大学, 2013)
[11] Li X F, Wang Y F, Zhang P, et al.Effect of pre-strain on hydrogen embrittlement of high strength steels[J]. Mater. Sci. Eng., 2014, A616: 116
[12] McMahon C J Jr. Hydrogen-induced intergranular fracture of steels[J]. Eng. Fract. Mech., 2001, 68: 773
[13] Yin H, Li Q, Li J X, et al.Study on hydrogen embrittlement for pre-charged Maraging Steel[J]. Surf. Technol., 2016, 45(7): 22尹航, 李倩, 李金许等. 预充氢马氏体时效钢的氢脆性能研究[J]. 表面技术, 2016, 45(7): 22)
[14] Olden V, Thaulow C, Johnsen R.Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Mater. Des., 2008, 29: 1934
[15] Guo W, Zhao W M, Zhang T M, et al.Hydrogen permeation behavior of X80 steel under cathodic polarization and stress[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 353郭望, 赵卫民, 张体明等. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35: 353)
[16] Kim S J, Jung H G, Kim K Y.Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment[J]. Electrochim. Acta, 2012, 78: 139
[17] Young G A Jr, Scully J R. The diffusion and trapping of hydrogen in high purity aluminum[J]. Acta Mater., 1998, 46: 6337
[18] Escobar D P, Depover T, Duprez L, et al.Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel[J]. Acta Mater., 2012, 60: 2593
[19] Choo W Y, Lee J Y.Effect of cold working on the hydrogen trapping phenomena in pure iron[J]. Metall. Trans., 1983, 14A: 1299
[20] Gerberich W W, Chen Y T.Hydrogen-controlled cracking-An approach to threshold stress intensity[J]. Metall. Trans., 1975, 6A: 271
[21] Ronevich J A,De Cooman B C,Speer J G, et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metall. Mater. Trans., 2012, 43A: 2293
[22] Wang Y B, Wang S, Yan L W, et al.The effects of plastic deformation on hydrogen induced cracking[J]. J. Chin. Soc. Corros. Prot., 2000, 20: 248王燕斌, 王胜, 颜练武等. 塑性变形在氢致断裂中的作用[J]. 中国腐蚀与防护学报, 2000, 20: 248)
[1] 王艳飞,巩建鸣,唐建群,蒋旺,姜莹洁. 冷拔残余应力应变对钢丝氢扩散过程的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 202-207.
[2] 李华飞; 徐金文; 刘根凡 . 渗铝钢的抗氢损伤性能[J]. 中国腐蚀与防护学报, 2005, 25(4): 237-240 .
[3] 傅朝阳;郑家燊. 钻井液中碳钢的氢扩散和腐蚀疲劳行为[J]. 中国腐蚀与防护学报, 1997, 17(4): 263-268.
[4] 路民旭;郑修麟. 超高强度钢CF裂纹扩展的超载效应 Ⅰ.定量模型及预测[J]. 中国腐蚀与防护学报, 1994, 14(3): 184-192.