Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 487-494    DOI: 10.11902/1005.4537.2017.155
  研究报告 本期目录 | 过刊浏览 |
高温状态下锅炉给水氧化还原电位监测与模拟实验研究
乔越, 朱志平(), 杨磊, 刘志峰
长沙理工大学化学与生物工程学院 电力与交通材料保护湖南省重点实验室 长沙 410004
Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures
Yue QIAO, Zhiping ZHU(), Lei YANG, Zhifeng LIU
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410004, China
全文: PDF(1671 KB)   HTML
摘要: 

通过实验室动态模拟给水实验,研究了氧化还原电位 (ORP) 与溶氧量、pH值、温度、流速的关系,并提出ORP经验计算式。结果表明,水溶液体系ORP随溶氧量的增大而增大,随pH值及温度的升高而减小,且受流速影响较小。相对于常温ORP测量,高温ORP信号有灵敏度高、精确性好的特点,能够实现对痕量溶氧的有效测量。在电厂实际运行中,可根据高温在线ORP监测结果,结合金属电位-pH值图判断金属腐蚀倾向,进而优化给水ORP。

关键词 氧化还原电位溶氧量pH值20#碳钢高温给水环境    
Abstract

Oxidation reduction potential (ORP) measurement can be an effective means for maintaining the state of feedwater for power station to be oxidizing, neutral, or reducing. In order to investigate the characteristics of ORP and its correlation with metal corrosion in high temperature water, a series of experiments including electrochemical measurement and simulated corrosion experiment were carried out. The results show that the ORP increases with the increase of dissolved oxygen content, while decreases with the increase of pH and temperature. Besides the flow rate has no effect on the ORP. It follows that ORP measurements for high-temperature and -pressure waters, as compared to the ones for low-temperature ORP waters, can act as a more sensitive and accurate method to effectively detect the trace amount of dissolved oxygen. In summary, ORP measurements can be used to understand, monitor and control the corrosion of steels in feedwater.

Key wordsoxidation reduction potential    dissolved oxygen content    pH value    20# carbon steel    high-temperature feedwater environment
收稿日期: 2017-09-27     
ZTFLH:  TG172.4  
基金资助:湖南省科技计划重点项目 (2013GK2016) 和湖南省研究生科研创新项目 (CX2017B488)
作者简介:

作者简介 乔越,男,1992年生,硕士生

引用本文:

乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 487-494.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.155      或      https://www.jcscp.org/CN/Y2018/V38/I5/487

图1  动态模拟测量试验装置
图2  不同温度下ORP随DO变化曲线
图3  不同温度下ORP与lgDO的关系
Temperature℃ Fitting equation (x : lgDO/μgL-1, z : ORP/mV) R 2
80 z =71.72x+114.48 0.9928
100 z =76.45x+89.60 0.9922
120 z =89.62x+38.53 0.9904
表1  不同温度下ORP-lgDO线性拟合式
图4  高温条件下ORP与氧含量对数的关系
图5  常温下ORP与pH值的关系
图6  高温下ORP与pH值的关系
Temperature℃ Fitting equation (y : pH, z : ORP/mV) R 2
80 z =797.46-68.20y 0.9954
100 z =803.17-70.88y 0.9917
120 z =789.91-73.52y 0.9966
表2  不同温度下ORP-pH线性拟合式
图7  80 ℃下ORP随水样流量变化趋势图
图8  ORP与温度的关系
图9  不同温度下ORP与DO、pH值的关系
Temperature ℃ Fitting equation (x : lgDO/μgL-1; y: pH; z : ORP/mV)
80 z =71.72x-68.20y+728.2
100 z=76.45x-70.88y+720.5
120 z =89.62x-73.52y+700.2
表3  不同温度下ORP-DO-pH线性拟合式
Number DO pH Calculated value Measured value Test statisticsa
1 10 8 254.3 261.6 Z=-0.357b
2 10 9 186.1 192.3
3 30 8 288.5 295.4 Asymp. Sig. (2-tailed)=0.721
4 30 9 220.3 224.7
5 100 8 326.0 329.1
6 100 9 257.8 249.9
7 200 8 347.6 340.3
8 200 9 279.4 276.7
9 300 8 360.3 353.4
10 300 9 292.1 285.7
表4  80 ℃下ORP经验计算值与测量值Wilcoxon检验统计结果
Number DO pH Calculated value Measured value Test statisticsa
1 10 8 201.7 210.4 Z=-0.765b
2 10 9 128.1 135.2
3 30 8 244.4 239.6 Asymp. Sig. (2-tailed)=0.444
4 30 9 170.9 167.6
5 100 8 291.3 288.2
6 100 9 217.8 213.2
7 200 8 318.3 323.4
8 200 9 244.7 235.6
9 300 8 334.0 342.7
10 300 9 201.7 210.4
表5  120 ℃下ORP经验计算值与测量值Wilocoxon检验统计结果
图10  80 ℃下Fe-H2O体系电位-pH图
图11  80 ℃下Cu-H2O体系电位-pH图
图12  20#碳钢腐蚀电位与溶液ORP关系图
[1] National Energy Administration.DL/T 1480-2015 Test method for oxidation-reduction potential of water [S]. Beijing: China Electric Power Press, 2015(国家能源局. DL/T 1480-2015 水的氧化还原电位测量方法[S].北京: 中国电力出版社, 2015)
[2] Macdonald D D.Viability of hydrogen water chemistry for protecting in-vessel components of boiling water reactors[J]. Corrosion, 1992, 48: 194
[3] Macdonald D D.Redox potential measurements in high temperature aqueous systems[J]. J. Electrochem. Soc., 1981, 128: 250
[4] Jones R L, Nelson J L.Hydrogen water chemistry for BWRs: A status report on the EPRI development program[J]. Nucl. Eng. Des., 1990, 124: 33
[5] Hicks P D, Grattan D A.Method and device for creating and analyzing an at temerature and pressure oxidation-reduction potential signature in hot water systems for preventing corrosion [P]. US Pat, US7955853, 2011
[6] Gray D M.The role of dissolved oxygen and ORP measurements in power plant chemistry[J]. Power Plant Chem., 2008, 10: 320
[7] Olson V G.Evaluating on-line high purity water oxidizing-reducing potential analysis for boiler feedwater quality[J]. Power Plant Chem., 2010, 12: 110
[8] Gray D M.Practical quality assurance of on-line analytical measurements[J]. Power Plant Chem., 2010, 12: 492
[9] Lendi M, Wuhrmann P.Impact of film-forming amines on the reliability of online analytical instruments[J]. Power Plant Chem., 2012, 14: 560
[10] Hicks P D, Grattan D A, White P M, et al.Feedwater redox stress management: a detailed @T ORP? study at a coal-fired electric utility[J]. Power Plant Chem., 2007, 9: 324
[11] Zheng L L, Dong J, Li H B, et al.Optimization of oxidation - reduction potential in water [A]. Annual Meeting of the Chinese Society for Environmental Science[C]. Haikou, 2016: 1045(郑琳琳, 董捷, 李海滨等. 水中氧化还原电位测定方法优化 [A]. 2016中国环境科学学会学术年会[C]. 海口, 2016: 1045)
[12] Kerner Z, Balog J, Nagy G.Testing of high temperature reference electrodes for light water reactor applications[J]. Corros. Sci., 2006, 48(8): 1899
[13] Xiang J, Xu L P, Li H P, et al.Research on and application of oxidation-reduction potential[J]. Earth Environ., 2014, 42: 430(向交, 徐丽萍, 李和平等. 氧化还原电位的研究及应用[J]. 地球与环境, 2014, 42: 430)
[14] Xu H C, Xu X J, Wang K, et al.An analysis of factors affecting the oxidation reduction potential in drinking water[J]. J. Univ. Sci. Technol. Suzhou (Eng. Technol.), 2007, 20(2): 63(徐华成, 徐晓军, 王凯等. 饮用水氧化还原电位的影响因素分析[J]. 苏州科技学院学报(工程技术版), 2007, 20(2): 63)
[15] Huang Q, Song J X, Wang S H, et al.Influencing factors of ORP measurement for reverse osmosis influent water in thermal power plants[J]. Ind. Water Treat., 2015, 35(6): 75(黄茜, 宋敬霞, 汪思华等. 火电厂反渗透进水ORP测量的影响因素[J]. 工业水处理, 2015, 35(6): 75)
[16] Hoare J P.On the interaction of oxygen with platinum[J]. Electrochim. Acta, 1982, 27: 1751
[17] Niedrach L W, Stoddard W H.Corrosion potentials and corrosion behavior of AISI 304 stainless steel in high-temperature water containing both dissolved hydrogen and oxygen[J]. Corrosion, 1986, 42: 696
[18] Jia J M, Chen J G, Li Z G, et al.Countermeasures against massive exfoliation of oxidation scale on the internal surface of coarse grained 18-8 type stainless steel boiler tubes[J]. Electr. Power, 2008, 41(5): 37(贾建民, 陈吉刚, 李志刚等. 18-8系列粗晶不锈钢锅炉管内壁氧化皮大面积剥落防治对策[J]. 中国电力, 2008, 41(5): 37)
[19] Lu J T, Gu Y F.High-temperature steam oxidation behavior of alloys used for key parts of the power plant boiler[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 19(鲁金涛, 谷月峰. 电站锅炉关键部件材料高温蒸汽氧化研究进展[J]. 中国腐蚀与防护学报, 2014, 34: 19)
[20] Liu C H, Shi G Z.Study on accurate control of feed-water oxygenated treatment for capital construction 1000 MW ultra-supercritical unit[J]. Technol. Water Treat., 2013, 39(6): 109(刘春红, 施国忠. 基建超超临界1000 MW机组精确给水加氧处理技术的研究[J]. 水处理技术, 2013, 39(6): 109)
[21] Chen T Y, Moccari A A, Macdonald D D.Development of controlled hydrodynamic techniques for corrosion testing[J]. Corrosion, 1992, 48: 239
[22] Macdonald D D, Lin C C.Discussion on "electrochemical potential measurements under simulated BWR water chemistry conditions"[J]. Corrosion, 1993, 49: 90
[23] Eason E D.Modeling ECP of stainless steel in simulated BWR environments with hydrogen peroxide addition [R]. Palo Alto, CA: Electric Power Research Institute, 1991
[24] Shu Y D, Yang X Y.Modern Electrochemical Research Methods [M]. Changsha: Central South University Press, 2015: 34(舒余德, 杨喜云著. 现代电化学研究方法 [M]. 长沙: 中南大学出版社, 2015: 34)
[25] Zhou B Q, Chen Z H.Water Treatment in the Thermal Power Plant [M]. 4th Ed.,Beijing: China Electric Power Press, 2009: 595(周柏青, 陈志和. 热力发电厂水处理 [M]. 第4版. 中国电力出版社, 2009: 595)
[1] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[2] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[3] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[4] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[5] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[6] 黄涛,陈小平,王向东,米丰毅,刘芮,李向阳. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[7] 董洋洋, 黄峰, 程攀, 胡骞, 刘静. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
[8] 王玉娜, 聂凯斌, 杨冬, 姚隽旸, 董万田, 廖强强. 模拟海水淡化一级反渗透产水中咪唑啉缓蚀剂对20#碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 407-414.
[9] 刘淑云, 王帅星, 杜楠, 王力强, 肖金华. X80管线钢在不同pH值红壤模拟溶液中的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 21-26.
[10] 叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[11] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[12] 邢云颖, 刘智勇, 杜翠薇, 李晓刚, 刘然克, 朱敏. H2S浓度和pH值对X65海管钢焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 231-236.
[13] 吴志斌,魏英华,李京,孙超. 溶液状态对模拟剥离涂层底部Q345钢阴极极化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(5): 369-374.
[14] 顾宝珊;刘建华. 电化学阻抗谱研究pH值对铝合金表面铈盐转化膜形成过程的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 124-128.
[15] 陈旭;李晓刚;杜翠薇; 梁平. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.