Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (5): 431-437    DOI: 10.11902/1005.4537.2017.153
  研究报告 本期目录 | 过刊浏览 |
Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究
王力1, 郭春云2, 肖葵1, 吐尔逊·斯拉依丁2, 董超芳1(), 李晓刚1
1 北京科技大学腐蚀与防护中心 北京 100083
2 新疆吐鲁番自然环境试验研究中心 吐鲁番 838200
Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years
Li WANG1, Chunyun GUO2, Kui XIAO1, Tuerxun·Silayiding2, Chaofang DONG1, Xiaogang LI1
1 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Xinjiang Turpan Natural Environmental Test Research Center, Turpan 838200, China
全文: PDF(3568 KB)   HTML
摘要: 

在吐鲁番干热大气环境中对Q235和Q450钢进行4 a大气暴晒实验。结果表明,两种钢表面均有较为明显的锈层,Q450耐候钢4 a的平均腐蚀速率为12 g·m-2·a-1,Q235钢平均腐蚀速率为14 g·m-2·a-1,Q450钢腐蚀速率相对较低,腐蚀坑深度较浅。腐蚀产物主要由α-FeOOH,γ-FeOOH和Fe2O3·H2O组成,其中Q450钢腐蚀产物中α-FeOOH比例相对较高,腐蚀产物致密。电化学阻抗测试结果表明:Q450钢腐蚀产物电阻远大于Q235钢的,表面电荷转移电阻也大于Q235钢的,即Q450钢耐蚀性较好,腐蚀产物对基体保护作用相对较好。

关键词 碳钢吐鲁番大气腐蚀    
Abstract

Atmospheric exposure of carbon steels Q235 and Q450 were conducted for 4 a in dry hot atmospheric environment at Turpan district of Xinjiang Uygur Autonomous Region. The results showed that the surface of the two steels presented obvious corrosion products scale. The average corrosion rate of Q450 and Q235 was 12 and 14 g·m-2·a-1 respectively. Thus, Q450 steel exhibits corrosion rate lower than Q235 steel, and while the corresponding corrosion pits were relatively shallow. The corrosion products of the two steels composed mainly of α-FeOOH, γ-FeOOH and Fe2O3·H2O, while the proportion of α-FeOOH for Q450 was higher than that for Q235. The corrosion products on Q450 were relatively dense. Thereby, it hindered the absorption of water and sediment, leading to the decrease of corrosion rate. The result of EIS demonstrated that the resistance of corrosion products and surface charge transfer of Q450 was greater than that of Q235, i.e. the corrosion products of Q450 had better protectiveness.

Key wordscarbon steel    Turpan    atmospheric corrosion
收稿日期: 2017-09-20     
ZTFLH:  TG172  
基金资助:国家重点研发项目 (2017YFB0702300),国家自然科学基金 (51671029) 和中央高校基本科研基金 (FRF-TP-17-002B)
作者简介:

作者简介 王力,男,1992年生,硕士生

引用本文:

王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 431-437.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.153      或      https://www.jcscp.org/CN/Y2018/V38/I5/431

Steel C Si Mn S P Cu Ni Cr Fe
Q235 0.14 0.13 0.44 0.031 0.015 --- --- --- Bal.
Q450 0.067 0.19 1.36 0.004 0.017 0.36 0.19 0.57 Bal.
表1  Q235和Q450钢的化学成分
Date Average temperature / ℃ Average highest temperature / ℃ Average lowest temperature / ℃ Precipitation
mm
Average relative humidity / % Average wind speed / ms-1
2012.07 35.8 39.8 30.4 0 21 3.4
2012.08 33.8 39.2 28.4 0 14 3.7
2012.09 27.1 32.8 21.5 0 20 2.2
2012.10 16.3 25.2 11.2 0 26 2.4
2012.11 1.6 6.2 -2.1 0 30.1 2.5
2012.12 -6.7 -2.6 -9.9 0 59.3 1.5
2013.01 -12.6 -7.2 -16.4 0 80.0 1.0
2013.02 1.5 6.0 -2.9 0 42.8 2
2013.03 16.4 20.6 7.7 0 17.4 2.1
2013.04 23.0 27.0 14.1 0.02 15.1 2.6
2013.05 28.9 32.0 20.9 0 14.1 3.3
2013.06 33.2 37.7 28.6 0 18.3 4.1
表2  吐鲁番暴晒试验场2012.07~2013.07气象数据[5]
图1  Q235和Q450钢吐鲁番大气环境中暴晒4 a后的宏观形貌
图2  Q235和Q450钢经吐鲁番大气环境中暴晒4 a后的表面显微形貌
图3  Q235和Q450钢在吐鲁番大气环境中暴晒不同时间的腐蚀速率
图4  Q235和Q450钢在吐鲁番大气环境中暴晒4 a的腐蚀坑深度分布图
图5  Q235和Q450钢在吐鲁番大气环境中暴晒4 a的腐蚀坑深度
图6  Q235钢吐鲁番大气环境中暴晒4 a的腐蚀产物截面形貌及EDS分析结果
图7  Q450钢吐鲁番大气环境中暴晒4 a的腐蚀产物截面形貌及EDS结果
图8  Q235和Q450钢在吐鲁番大气环境中暴晒4 a后表面锈层的XRD谱
图9  Q235和Q450钢在吐鲁番大气环境中暴晒4 a后在0.1 mol/L Na2SO4溶液中的EIS曲线
图10  EIS结果拟合电路
Steel RfΩcm2 CPEfμFcm-2 RtΩcm2 CPEdlμFcm-2 WΩcm2
Q235 121.2 4.0×10-3 142.2 2.579×10-6 0.019
Q450 2570.0 5.6×10-3 322.2 8.530×10-6 0.014
表3  EIS拟合电路各元件参数值
[1] Xiao Y D, Wang G Y, Li X G.The corrosive characteristics of atmospheric environment and materials in Western China[J]. J. Chin. Soc. Corros. Prot., 2003, 23: 57(萧以德, 王光雍, 李晓刚. 我国西部地区大气环境腐蚀性及材料腐蚀特征[J]. 中国腐蚀与防护学报, 2003, 23: 57)
[2] Li H Y, Fang Y H, Xiao K, et al.Corrosion behavior of carbon steels in hot and dry atmosphere environment at Turpan area[J]. Corros. Sci. Prot. Technol., 2014, 26: 407(李慧艳, 方月华, 肖葵等. 碳钢在吐鲁番干热大气环境中的腐蚀行为[J]. 腐蚀科学与防护技术, 2014, 26: 407)
[3] Liang C F, Hou W T.Atmospheric corrosivity for steels[J]. J. Chin. Soc. Corros. Prot., 1998, 18(1): 3(梁彩凤, 侯文泰. 环境因素对钢的大气腐蚀的影响[J]. 中国腐蚀与防护学报, 1998, 18(1): 3)
[4] Luo H, Li X G, Xiao K, et al.Corrosion behavior of 304 stainless steel in the marine atmospheric environment of Xisha islands[J]. J. Univ. Sci. Technol. Beijing, 2013, 35: 332(骆鸿, 李晓刚, 肖葵等. 304不锈钢在西沙海洋大气环境中的腐蚀行为[J]. 北京科技大学学报, 2013, 35: 332)
[5] Saha D, Pandya A, Singh J K, et al.Role of environmental particulate matters on corrosion of copper[J]. Atmos. Pollut. Res., 2016, 7: 1037
[6] Hao X C, Li X G, Xiao K, et al.Characterization of rust layers formed on Q235 steel exposed to atmosphere in Xisha islands[J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 1239(郝献超, 李晓刚, 肖葵等. Q235碳钢在西沙大气暴晒的锈层特征[J]. 北京科技大学学报, 2009, 31: 1239)
[7] Li D L, Fu G Q, Zhu M Y, et al.Effect of SO2 pollution on corrosion behavior of Q235B steel in hot and humid marine atmosphere[J]. Iron Steel, 2017, 52(1): 64(李东亮, 付贵勤, 朱苗勇等. 湿热海洋大气中SO2污染对Q235B钢腐蚀行为的影响[J]. 钢铁, 2017, 52(1): 64)
[8] Wang C, Cao G W, Pan C, et al.Atmospheric corrosion of carbon steel and weathering steel in three environments[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39(汪川, 曹公旺, 潘辰等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究[J]. 中国腐蚀与防护学报, 2016, 36: 39)
[9] Qiang Y U, Dong C F, Fang Y H, et al.Atmospheric corrosion of Q235 carbon steel and Q450 weathering steel in Turpan, China[J]. J. Iron Steel Res. Int., 2016, 23: 1061
[10] Yamashita M, Nagano H, Misawa T, et al.Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and north America[J]. ISIJ Int., 1998, 38: 285
[11] Cheng X Q, Jin Z, Liu M, et al.Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres[J]. Corros. Sci., 2017, 115: 135
[12] Kong D C, Dong C F, Fang Y H, et al.Copper corrosion in hot and dry atmosphere environment in Turpan, China[J]. Trans. Chin. J. Nonferrous Met., 2016, 26: 1721
[13] Li Q X, Wang Z Y, Han W, et al.Review on atmospheric corrosion of weathering and carbon steels[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 394(李巧霞, 王振尧, 韩薇等. 碳钢和耐候钢的大气腐蚀[J]. 中国腐蚀与防护学报, 2009, 29: 394)
[14] Xiao K, Dong C F, Li X G, et al.Atmospheric corrosion behavior of weathering steels in initial stage[J]. J. Iron Steel Res., 2008, 20: 53(肖葵, 董超芳, 李晓刚等. 大气腐蚀下耐候钢的初期行为规律[J]. 钢铁研究学报, 2008, 20: 53)
[15] Ma Y T, Li Y, Wang F H.The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112: 844
[16] Kamimura T, Stratmann M.The influence of chromium on the atmospheric corrosion of steel[J]. Corros. Sci., 2001, 43: 429
[17] Li H Y, Fang Y H, Xiao K, et al.Corrosion behavior of 7A04 and 2A12 aluminum alloy in hot and dry atmosphere environment in Turpan[J]. Corros. Prot., 2014, 35: 1098(李慧艳, 方月华, 肖葵等. 7A04和2A12铝合金在吐鲁番干热大气环境中的腐蚀行为[J]. 腐蚀与防护, 2014, 35: 1098)
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[3] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[4] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[6] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[7] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[8] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[9] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[10] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[11] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[12] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[13] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[14] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[15] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.