Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 174-182    DOI: 10.11902/1005.4537.2017.147
  研究报告 本期目录 | 过刊浏览 |
杀鱼假交替单胞菌对模拟海水流动环境下Q235碳钢腐蚀的抑制行为
叶赛1,2, MasoumehMoradi2, 宋振纶2, 胡方勤2, 孙朝晖2, 龙剑平1()
1 成都理工大学材料与化学化工学院 成都 610059
2 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater
Sai YE1,2, Moradi Masoumeh2, Zhenlun SONG2, Fangqin HU2, Zhaohui SHUN2, Jianping LONG1()
1 College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China;
2 Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(4086 KB)   HTML
摘要: 

从位于中国东海的钢铁研究总院舟山海洋腐蚀研究所近海海域的海底沉积物中分离提取得到杀鱼假交替单胞菌,分别将其接种到细菌培养广口瓶和模拟海水流动环境培养器中,利用电化学工作站、扫描电镜及红外光谱仪对浸泡于两种培养体系中Q235碳钢样品的腐蚀行为进行研究。结果表明,杀鱼假交替单胞菌能抑制碳钢在海水中的腐蚀进程。样品的阻抗在广口瓶培养体系中得到了更为明显的提高,广口瓶培养体系中的碳钢样品表面覆盖着一层质地均匀且完整的生物膜;而模拟海水流动环境中碳钢样品表面的生物膜厚度不均匀,海水通过膜层上的孔洞和裂隙与未成膜基体直接接触,在生物膜与样品表面之间形成氧浓差微电池使得局部腐蚀得以发展。红外光谱分析结果显示,培养7 d后两个体系中碳钢样品表面的生物膜内细菌的分泌物大分子不同。

关键词 杀鱼假交替单胞菌抑制腐蚀实验室条件培养模拟海洋流动环境培养氧浓差电池    
Abstract

Pseudoalteromonas piscicida was separated and extracted from seafloor sediments located in offshore waters of Zhoushan institute of marine corrosion at Zhoushan islands of the East China Sea. Then the bacterium was inculated to laboratorial bottle that placed in a constant temperature incubator shaker and to an incubator with environment of simulated lowing sea water, respectively. The effect of Pseudoalteromonas piscicida on the corrosion of Q235 carbon steel in the above two bacterial culture systems has been studied by means of electrochemical workstation, scanning electron microscope and Fourier infrared spectrometer. Results showed that this bacterium could inhibit effectively the corrosion of Q235 carbon steel in seawater. The impedance of the carbon steel was enhanced more obviously in laboratorial bottle and its surface was completely covered with an uniform and dense biofilm, while the uneven biofilm formed on the surface of carbon steel in the simulated flowing seawater system, seawater can direct contact the substrate via holes and crevices which were randomly distributed throughout the biofilm, provided conditions for the formation of oxygen concentration cell, therefore weakened the corrosion resistance of carbon steel. FT-IR spectrum showed there were differences in secretory macromolecules for the same bacterium but cultured respectively in the two culture systems after 7 d.

Key wordsPseudoalteromonas piscicida    corrosion inhibition    laboratorial culturing    simulated marine environmental culturing    oxygen concentration cell
收稿日期: 2017-09-09     
基金资助:国家自然科学基金 (5161101078),中国科学院院长国际奖学金 (PIFI),浙江省公益项目 (2015C31031) 和宁波市自然科学基金 (2015A610070)
作者简介:

作者简介 叶赛,男,1992年生,硕士生

引用本文:

叶赛, MasoumehMoradi, 宋振纶, 胡方勤, 孙朝晖, 龙剑平. 杀鱼假交替单胞菌对模拟海水流动环境下Q235碳钢腐蚀的抑制行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 174-182.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.147      或      https://www.jcscp.org/CN/Y2018/V38/I2/174

图1  工作电极示意图
图2  广口瓶培养系统示意图
图3  模拟海水流动培养系统示意图
图4  Q235 碳钢在无菌与含菌LB和FS中的Nyquist图和Bode图
图5  Q235碳钢在无菌与含菌LB和FS中浸泡不同时间后EIS的等效电路图
Condition Rs
Ωcm2
Rct
kΩcm2
Rof
Ωcm2
Rb
Ωcm2
CPEdl
μFcm-2
CPEof
μFcm-2
CPEb
μFcm-2
LB/0 h(sterile) 1.58 0.511 --- --- 1.9 --- ---
LB/0 h(bacterial) 3.14 2.136 --- --- 12.5 --- ---
LB/1 d(sterile) 3.39 0.794 45.6 --- 32.6 78.6 ---
LB/1 d(bacterial) 1.63 12.53 78.5 89.1 23.7 64.3 36.5
LB/3 d(sterile) 8.47 0.266 170.1 --- 31.8 98.8 ---
LB/3 d(bacterial) 7.64 12.76 265.6 212.4 56.2 67.3 76.8
LB/7 d(sterile) 2.89 0.601 335.6 --- 71.4 109.4 ---
LB/7 d(bacterial) 0.81 13.36 677.3 376.2 32.4 54.2 155.4
LB/14 d(sterile) 1.87 0.234 403.8 --- 53.2 67.6 ---
LB/14 d(bacterial) 2.31 28.96 765.2 579.6 36.6 121.7 96.8
FS/0 h(sterile) 3.91 0.975 --- --- 4.6 --- ---
FS/0 h(bacterial) 3.23 1.843 --- --- 6.7 --- ---
FS/1 d(sterile) 4.29 0.422 54.3 --- 22.7 65.3 ---
FS/1 d(bacterial) 5.45 2.264 32.3 56.2 16.2 77.6 22.9
FS/3 d(sterile) 3.23 0.608 107.4 --- 63.2 89.2 ---
FS/3 d(bacterial) 2.87 2.449 49.3 128.3 10.5 34.6 13.4
FS/7 d(sterile) 2.13 0.701 154.2 --- 67.4 83.5 ---
FS/7 d(bacterial) 1.12 5.122 78.8 107.6 17.3 28.9 56.7
FS/14 d(sterile) 6.65 0.495 275.4 --- 43.9 90.7 ---
FS/14 d(bacterial) 3.45 8.743 72.5 316.5 16.6 43.8 49.5
表1  Q235碳钢在LB和FS中浸泡不同时间后的电化学阻抗谱拟合参数
图6  Q235碳钢在无菌和含菌LB和FS中浸泡不同时间后的极化曲线
Condition EcorrV Icorr
μAcm-2
βc
mVdec-1
βa
mVdec-1
Rp
kΩcm2
Corrosion rate
mma-1
LB/1 d(sterile) -0.928 26.74 -78.8 99.2 0.19 2.87
LB/1 d(bacterial) -0.907 35.91 -69.6 176.5 0.36 1.89
LB/7 d(bacterial) -0.821 11.62 -75.9 189.6 1.19 0.27
LB/14 d(sterile) -0.866 39.92 -86.9 114.6 0.52 1.96
LB/14 d(bacterial) -0.714 4.16 -92.3 191.3 2.45 0.09
FS/1 d(sterile) -0.885 56.38 -43.4 89.6 0.46 3.23
FS/1 d(bacterial) -0.913 49.33 -366.3 120.1 0.24 3.54
FS/7 d(bacterial) -0.905 31.62 -39.2 115.8 0.78 2.79
FS/14 d(sterile) -0.984 55.81 -75.8 176.2 0.28 2.15
FS/14 d(bacterial) -0.815 11.67 -54.1 166.4 1.67 0.97
表2  Q235碳钢在LB和FS中浸泡不同时间后的极化参数
图7  Q235碳钢在LB和FS中浸泡7和14 d后的SEM像
图8  Q235碳钢在LB和FS中浸泡7 d后表面SEM像及对应的EDS分析结果
图9  Q235碳钢在LB与FS中浸泡7和14 d后表面生物膜的FT-IR谱
[1] Andijani I, Turgoose S.Studies on corrosion of carbon steel in deaerated saline solutions in presence of scale inhibitor[J]. Desalination, 1999, 123: 223
[2] Beech I B, Sunner J.Biocorrosion: Towards understanding interactions between biofilms and metals[J]. Curr. Opin. Biotechnol., 2004, 15: 181
[3] Enning D, Garrelfs J.Corrosion of iron by sulfate-reducing bacteria: New views of an old problem[J]. Appl. Environ. Microbiol., 2014, 80: 1226
[4] Lens P N L, Visser A, Janssen A J H, et al. Biotechnological treatment of sulfate-rich wastewaters[J]. Crit. Rev. Environ. Sci. Technol., 1998, 28: 41
[5] Li H B, Yang C T, Zhou E Z, et al.Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm[J]. J. Mater. Sci. Technol., 2017, 33: 1596
[6] Olivieri G, Russo M E, Marzocchella A, et al.Modeling of an aerobic biofilm reactor with double-limiting substrate kinetics: Bifurcational and dynamical analysis[J]. Biotechnol. Prog., 2011, 27: 1599
[7] Moradi M, Song Z L, Tao X.Introducing a novel bacterium, Vibrio neocaledonicus sp., with the highest corrosion inhibition efficiency[J]. Electrochem. Commun., 2015, 51: 64
[8] Cao B, Shi L, Brown R N, et al.Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: Characterization by infrared spectroscopy and proteomics[J]. Environ. Microbiol., 2011, 13: 1018
[9] Banerjee S, Srivastava V, Singh M M.Chemically modified natural polysaccharide as green corrosion inhibitor for mild steel in acidic medium[J]. Corros. Sci., 2012, 59: 35
[10] Zuo R J.Biofilms: Strategies for metal corrosion inhibition employing microorganisms[J]. Appl. Microbiol. Biotechnol., 2007, 76: 1245
[11] Javed M A, Stoddart P R, Palombo E A, et al.Inhibition or acceleration: Bacterial test media can determine the course of microbiologically influenced corrosion[J]. Corros. Sci., 2014, 86: 149
[12] Kester D R, Duedall I W, Connors D N, et al.Preparation of artificial seawater[J]. Limnol. Oceanogr., 1967, 12: 176
[13] Gon?alves R S, Azambuja D S, Lucho A M S. Electrochemical studies of propargyl alcohol as corrosion inhibitor for nickel, copper, and copper/nickel (55/45) alloy[J]. Corros. Sci., 2002, 44: 467
[14] Sun Z H, Moradi M, Yang L J, et al.Effect of bacillus vietnamensis as an iron oxidizing bacterium on corrosion of 2507 duplex stainless steel in sea water[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 659(孙朝晖, Moradi M, 杨丽景等. 越南芽孢杆菌对2507双相不锈钢加速腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36: 659)
[15] Jackson M, Mantsch H H.The use and misuse of FTIR spectroscopy in the determination of protein structure[J]. CRC Crit. Rev. Biochem., 2008, 30(2): 95
[16] Flis J, Zakroczymski T.Impedance study of reinforcing steel in simulated pore solution with tannin[J]. J. Electrochem. Soc., 1996, 143: 2458
[17] Juzeliūnas E, Ramanauskas R, Lugauskas A, et al.Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides[J]. Electrochem. Commun., 2005, 7: 305
[18] Finkenstadt V L, C?té G L, Willett J L.Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides[J]. Biotechnol. Lett., 2011, 33: 1093
[19] Jayaraman A, Cheng E T, Earthman J C, et al.Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms[J]. J. Ind. Microbiol. Biotechnol., 1997, 18: 396
[20] Mansfeld F, Little B.A technical review of electrochemical techniques applied to microbiologically influenced corrosion[J]. Corros. Sci., 1991, 32: 247
[21] Xiao T, Moradi M, Song Z L, et al.Inhibition effect of exopolysaccharide of Vibrio neocaledonicus sp. on Q235 carbon steel in sulphuricacid solution[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 150(肖涛, Moradi M, 宋振纶等. 新喀里多尼亚弧菌胞外聚合物对硫酸中Q235碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2016, 36: 150)
[22] Jin J T, Wu G X, Zhang Z H, et al.Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresour. Technol., 2014, 165: 162
[23] Umoren S A, Ogbobe O, Igwe I O, et al.Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives[J]. Corros. Sci., 2008, 50(7): 1998
[24] Labjar N, Lebrini M, Bentiss F, et al.Corrosion inhibition of carbon steel and antibacterial properties of aminotris-(methylenephosphonic) acid[J]. Mater. Chem. Phys., 2010, 119: 330
[25] Chongdar S, Gunasekaran G, Kumar P.Corrosion inhibition of mild steel by aerobic biofilm[J]. Electrochim. Acta, 2005, 50(24): 4655
[26] Garrido J M, van Benthum W A J, van Loosdrecht M C M, et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor[J]. Biotechnol. Bioeng., 2015, 53: 168
[27] Schmitt J, Flemming H C.FTIR-spectroscopy in microbial and material analysis[J]. Int. Biodeterior. Biodegrad., 1998, 41: 1
No related articles found!