Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 117-123    DOI: 10.11902/1005.4537.2017.136
  综合评述 本期目录 | 过刊浏览 |
钛合金表面耐磨涂层研究进展
付颖1, 张艳1(), 包星宇2, 张伟3, 王福会4, 辛丽3
1 沈阳工业大学理学院 沈阳 110870
2 辽宁省高速公路实业发展有限责任公司 沈阳 110006
3 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
4 东北大学材料科学与工程学院 沈阳 110819
Research Progress on Wear-resistant Coatings for Ti-alloy
Ying FU1, Yan ZHANG1(), Xingyu BAO2, Wei ZHANG3, Fuhui WANG4, Li XIN3
1 School of Science, Shenyang University of Technology, Shenyang 110870, China
2 Liaoning Expressway Industrial Development Co. LTD, Shenyang 110006, China
3 Shenyang Materials Science National Research Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(606 KB)   HTML
摘要: 

总结了提高钛合金表面耐磨性的相关方法,分析了微弧氧化表面改性技术的优势与不足,并对微弧氧化与其他表面改性技术相结合的复合处理进行了详细的阐述,展望了钛合金表面耐磨技术未来发展的方向。

关键词 钛合金耐磨性能微弧氧化复合处理    
Abstract

This paper summarizes relevant techniques for enhancing wear resistance of Ti-alloy, with emphases on advantages and disadvantages of the micro arc oxidation technique. The duplex treatments, namely, the combination of micro arc oxidation with other surface modification techniques are described in detail. The application of the duplex treatments significantly improved wear and corrosion resistance of titanium alloy and seems to be the development trend of the titanium alloy surface treatment technology.

Key wordstitanium alloy    wear resistance    micro-arc oxidation    duplex treatment
收稿日期: 2017-08-18     
基金资助:国家自然科学基金 (U1537107)
作者简介:

作者简介 付颖,女,1993年生,硕士生

引用本文:

付颖, 张艳, 包星宇, 张伟, 王福会, 辛丽. 钛合金表面耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 117-123.
Ying FU, Yan ZHANG, Xingyu BAO, Wei ZHANG, Fuhui WANG, Li XIN. Research Progress on Wear-resistant Coatings for Ti-alloy. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 117-123.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.136      或      https://www.jcscp.org/CN/Y2018/V38/I2/117

[1] Zhang W Y.Titanium alloy surface wear-resisting processing engineering research present situation[J]. Total Corros. Control, 2017, 31(2): 25(张文毓. 钛合金表面耐磨处理技术研究现状[J]. 全面腐蚀控制, 2017, 31(2): 25)
[2] Itoh Y, Itoh A, Azuma H, et al.Improving the tribological properties of Ti-6Al-4V alloy by nitrogen-ion implantation[J]. Surf. Coat. Technol., 1999, 111: 172
[3] Wu Y, Wang A H, Zhang Z, et al.Wear resistance of in situ synthesized titanium compound coatings produced by laser alloying technique[J]. Surf. Coat. Technol., 2014, 258: 711
[4] Aliofkhazraei M, Gharabagh R S, Teimouri M, et al.Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium[J]. J. Alloy. Compd., 2016, 685: 376
[5] Franz S, Perego D, Marchese O, et al.Photoactive TiO2 coatings obtained by plasma electrolytic oxidation in refrigerated electrolytes[J]. Appl. Surf. Sci., 2016, 385: 498
[6] Jeng S C.Oxidation behavior and microstructural evolution of hot-dipped aluminum coating on Ti-6Al-4V alloy at 800 ℃[J]. Surf. Coat. Technol., 2013, 235: 867
[7] Wilson A D, Leyland A, Matthews A.A comparative study of the influence of plasma treatments, PVD coatings and ion implantation on the tribological performance of Ti-6Al-4V[J]. Surf. Coat. Technol., 1999, 114: 70
[8] Chen B M, Guo Z C.Current research status and development trends of electroless plating[J]. Plat. Finish., 2011, 33(11): 11(陈步明, 郭忠诚. 化学镀研究现状及发展趋势[J]. 电镀与精饰, 2011, 33(11): 11)
[9] Schell J, Lupascu D C, Carbonari A W, et al.Ion implantation in titanium dioxide thin films studied by perturbed angular correlations[J]. J. Appl. Phys., 2017, 121: 145302
[10] Luo Y, Ge S R, Liu H T.Study of tribology performance of nitrogen ion implantation into titanium alloy [A]. The National Conference on Tribology[C]. Harbin: 2006(罗勇, 葛世荣, 刘洪涛. 氮离子注入钛合金的摩擦学性能研究[A]. 2006全国摩擦学学术会议[C]. 哈尔滨: 2006)
[11] Gao C, Dai L, Meng W, et al.Electrochemically promoted electroless nickel-phosphorous plating on titanium substrate[J]. Appl. Surf. Sci., 2017, 392: 912
[12] Zangeneh-Madar K, Jafari A.Characterisation of electroless nickel plated titanium powder[J]. Surf. Eng., 2012, 28: 393
[13] Niu W, Sun R L.Research progress and development on laser cladding on titanium alloys surface[J]. Mater. Rev., 2006, 20(7): 58(牛伟, 孙荣禄. 钛合金激光熔覆的研究现状与发展趋势[J]. 材料导报, 2006, 20(7): 58)
[14] Hacisalihoglu I, Samancioglu A, Yildiz F, et al. Tribocorrosion properties of different type titanium alloys in simulated body fluid[J]. Wear, 2015, 332/333: 679
[15] Yu H L, Zhang W, Wang H M, et al.In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding[J]. J. Alloy. Compd., 2017, 701: 244
[16] Lv Y H, Li J, Tao Y F, et al.High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding[J]. Appl. Surf. Sci., 2017, 402: 478
[17] Cai Y C, Luo Z, Feng M N, et al.The effect of TiC/Al2O3 composite ceramic reinforcement on tribological behavior of laser cladding Ni60 alloys coatings[J]. Surf. Coat. Technol., 2016, 291: 222
[18] Sitek R, Kaminski J, Borysiuk J, et al.Microstructure and properties of titanium aluminides on Ti6Al4V titanium alloy produced by chemical vapor deposition method[J]. Intermetallics, 2013, 36: 36
[19] Weng F, Yu H J, Chen C Z, et al.Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V[J]. Mater. Des., 2015, 80: 174
[20] Ahnia F, Khelfaoui Y, Zaid B, et al.Thermally sprayed Al/Mo coatings on industrial steel E335 and effects on electrochemical parameters in simulated acid rain[J]. J. Alloy. Compd., 2017, 696: 1282
[21] Sloof W G, Nijdam T J.On the high-temperature oxidation of MCrAlY coatings[J]. Int. J. Mater. Res., 2009, 100: 1318
[22] Huang P K, Yeh J W, Shun T T, et al.Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Adv. Eng. Mater., 2004, 6: 1
[23] Cassar G, Banfield S, Wilson J C A B, et al. Impact wear resistance of plasma diffusion treated and duplex treated/PVD-coated Ti-6Al-4V alloy[J]. Surf. Coat. Technol., 2012, 206: 2645
[24] Behrens B A, Lippold L, Puppa J, et al.Steigerung der Verschlei?best?ndigkeit von Schmiedegesenken durch PVD-abgeschiedene hartstoffschichten auf titanbasis[J]. Forsch. Ingenieurwes., 2017, 81: 1
[25] Arslan E, Totik Y, Demirci E E, et al.Wear and adhesion resistance of duplex coatings deposited on Ti6Al4V alloy using MAO and CFUBMS[J]. Surf. Coat. Technol., 2013, 214: 1
[26] Xi Y T, Liu D X, Li M Y, et al.A comparison of the tribological properties between magnetron sputtering and multi-arc ion plating TiN films on titanium alloy[J]. China Surf. Eng., 2007, 20(6): 14(奚运涛, 刘道新, 李美英等. 钛合金表面磁控溅射与多弧离子镀TiN膜的摩擦学性能比较[J]. 试验研究, 2007, 20(6): 14)
[27] Zhao S L, Zhang Z, Zhang J, et al.Microstructure and wear resistance of TiAlZrCr/(Ti, Al, Zr, Cr)N gradient films deposited by multi-arc ion plating[J]. Acta Metall. Sin., 2016, 52: 747(赵时璐, 张震, 张钧等. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能[J]. 金属学报, 2016, 52: 747)
[28] Zhao D C, Xiao G J, Ma Z J, et al.Surface modification of carbon-fiber reinforced plastics with aluminum coatings[J]. Chin. J. Vac. Sci. Technol., 2010, 30: 510(赵栋才, 肖更竭, 马占吉等. 复材表面电弧离子镀镀铝膜性能研究[J]. 真空科学与技术学报, 2010, 30: 510)
[29] Wei X F, Zhang P Z, Wei D B, et al.Effect of multi-arc ion plating chromium films on the high temperature oxidation resistance of γ-TiAl alloy[J]. Rare Met. Mater. Eng., 2014, 43: 707(魏祥飞, 张平则, 魏东博等. 多弧离子镀Cr涂层对γ-TiAl合金高温氧化性能的影响[J]. 稀有金属材料与工程, 2014, 43: 707)
[30] Jiang B L, Yang W, Su Y.Engineering applications of microarc oxidation and magnetron sputtering[J]. Met. Heat. Treat., 2008, 33: 86(蒋百灵, 杨巍, 苏阳. 微弧氧化与磁控溅射的工程应用[J]. 金属热处理, 2008, 33: 86)
[31] Daroonparvar M, Yajid M A M, Yusof N M, et al. Deposition of duplex MAO layer/nanostructured titanium dioxide composite coatings on Mg-1%Ca alloy using a combined technique of air plasma spraying and micro arc oxidation[J]. J. Alloy. Compd., 2015, 649: 591
[32] Tao X W, Yao Z J, Luo X X.Comparison of tribological and corrosion behaviors of Cp Ti coated with the TiO2/graphite coating and nitrided TiO2/graphite coating[J]. J. Alloy. Compd., 2017, 718: 126
[33] Li Q B, Yang W B, Liu C C, et al.Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes[J]. Surf. Coat. Technol., 2017, 316: 162
[34] Wang S X, Zhao Q, Liu D X, et al.Microstructure and elevated temperature tribological behavior of TiO2/Al2O3 composite ceramic coating formed by microarc oxidation of Ti6Al4V alloy[J]. Surf. Coat. Technol., 2015, 272: 343
[35] Wang Z.Investigation of arc-sprayed aluminium coating on 6061 Al alloy and its sealing treatments [D]. Dalian: Dalian University of Technology, 2009(王真. 铝合金电弧喷涂纯铝涂层及封孔方法研究 [D]. 大连: 大连理工大学, 2009)
[36] Zhao H, Du C Y, Yang J H, et al.Preparation of micro-arc oxidation/polytetrafluoroethylene sealing composite self-lubricating film on titanium alloy and evaluation of wear resistance and corrosion resistance of the film[J]. Mater. Prot., 2014, 47(1): 8(赵晖, 杜春燕, 杨金花等. 钛合金微弧氧化-聚四氟乙烯复合自润滑膜的制备及其性能[J]. 材料保护, 2014, 47(1): 8)
[37] Du N, Wang S X, Zhao Q, et al.Microstructure and tribological properties of microarc oxidation composite coating containing Cr2O3 particles on TC4 titanium alloy[J]. Rare Met. Mater. Eng., 2013, 42: 621(杜楠, 王帅星, 赵晴等. TC4钛合金微弧氧化Cr2O3复合膜的结构及摩擦磨损性能[J]. 稀有金属材料与工程, 2013, 42: 621)
[38] Liu Q X, El Abedin S Z, Endres F. Electroplating of mild steel by aluminium in a first generation ionic liquid: A green alternative to commercial Al-plating in organic solvents[J]. Surf. Coat. Technol., 2006, 201: 1352
[39] Vangolu Y, Alsaran A, Yildirim O S.Wear properties of micro arc oxidized and hydrothermally treated Ti6Al4V alloy in simulated body fluid[J]. Wear, 2011, 271: 2322
[40] Qi B J, Fan J K, Zhang W, et al.A novel control grid bias power supply for high-frequency pulsed electron beam welding[J]. Vacuum, 2016, 133: 46
[41] Du C Y.Research of composite modification technology on titanium alloy surface [D]. Shenyang: Shenyang Ligong University, 2014(杜春燕. 钛合金表面复合改性技术研究 [D]. 沈阳: 沈阳理工大学, 2014)
[42] Mathis A, Rocca E, Veys-Renaux D, et al.Electrochemical behaviour of titanium in KOH at high potential[J]. Electrochim. Acta, 2015, 202: 253
[43] Tseng C C, Lee J L, Kuo T H, et al.The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy[J]. Surf. Coat. Technol., 2012, 206: 3437
[44] Dai J J, Zhu J Y, Zhuang L.Effect of surface aluminizing on long-term high-temperature thermal stability of TC4 titanium alloy[J]. Surf. Rev. Lett., 2016, 23: 1550102
[45] Wiecinski P, Smolik J, Garbacz H, et al.Microstructure and properties of metal/ceramic and ceramic/ceramic multilayer coatings on titanium alloy Ti6Al4V[J]. Surf. Coat. Technol., 2017, 309: 709
[46] Ouyang X Q, Zhou L Y, Yu B, et al.Structure and wear resistance of micro-arc oxide film of Al that deposited on TC4 alloy by magnetron sputtering technology[J]. J. Nanchang Hangkong Univ.: Nat. Sci., 2014, 28(2): 61(欧阳小琴, 周琳燕, 余斌等. TC4钛合金磁控溅射镀铝后微弧氧化膜的结构与耐磨性能研究[J]. 南昌航空大学学报: 自然科学版, 2014, 28(2): 61)
[47] Hu C J, Chiu P H.Wear and corrosion resistance of pure titanium subjected to aluminization and coated with a microarc oxidation ceramic coating[J]. Int. J. Electrochem. Sci., 2015, 10: 4290
[48] Wu Y.Research of composite coating on TC4 titanium alloy surface [D]. Shenyang: Shenyang Ligong University, 2015(武媛. TC4钛合金表面复合涂层的研究 [D]. 沈阳: 沈阳理工大学, 2015)
[49] Jin P, Sui R, Li F X, et al.Reactive wetting of TC4 titanium alloy by molten 6061 Al and 4043 Al alloys[J]. Acta Metall. Sin., 2017, 53: 479(靳鹏, 隋然, 李富祥等. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53: 479)
[50] Wang J M, Wen J B, Zhang W, et al.Status and advance on hot-dipped aluminium[J]. Surf. Technol., 2004, 33(5): 4(王杰敏, 文九巴, 张伟等. 热浸镀渗铝技术的研究现状及进展[J]. 表面技术, 2004, 33(5): 4)
[51] Wan L, Lv S, Huang Y, et al.Effect of hot dip aluminising on interfacial microstructure and mechanical properties of Ti/Al joint by TIG arc welding brazing[J]. Sci. Technol. Weld. Join., 2015, 20: 164
[52] Bu T, Yang L, Liu W J, et al.Effects of ion plating process on the microstructure and properties of the TC4 titanium alloy after microarc oxidation[J]. Technol. Dev. Enterprise., 2016, 35(34): 14(卜彤, 杨莲, 刘为杰等. 多弧离子镀铝工艺对TC4钛合金微弧氧化膜结构及性能的影响[J]. 企业技术开发, 2016, 35(34): 14)
[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[3] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[4] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[5] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[6] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[7] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[8] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[9] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[10] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.
[11] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[12] 郭宝会, 邱友绪, 李海龙. 人工神经网络在钛合金表面Ni-SiC复合电镀工艺中的应用[J]. 中国腐蚀与防护学报, 2017, 37(4): 389-394.
[13] 崔学军,李晓飞,李特,林修洲. 负向电压对AZ31B镁合金表面微弧氧化膜结构和耐蚀性的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 137-142.
[14] 崔学军,杨瑞嵩,李明田. 纳米Al2O3掺杂AZ31B镁合金表面微弧氧化膜的结构与性能[J]. 中国腐蚀与防护学报, 2016, 36(1): 73-78.
[15] 刘胤, 刘时美, 于鲁萍, 刘军, 姜伟. 镁合金的腐蚀与微弧氧化膜层研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 99-105.