Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 317-325    DOI: 10.11902/1005.4537.2017.120
  综合评述 本期目录 | 过刊浏览 |
镁合金点蚀的研究进展
樊志民1, 于锦1, 宋影伟2(), 单大勇2, 韩恩厚2
1 沈阳工业大学理学院 沈阳 110870
2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Research Progress of Pitting Corrosion of Magnesium Alloys
Zhimin FAN1, Jin YU1, Yingwei SONG2(), Dayong SHAN2, En-Hou HAN2
1 School of Science, Shenyang University of Technology, Shenyang 110870, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(9849 KB)   HTML
摘要: 

总结了国内外针对镁合金点蚀的最新研究成果,特别是腐蚀环境和微观结构对镁合金点蚀的萌生和发展的影响规律;介绍了新型微区原位技术在镁合金点蚀研究上的应用,并指出将微区原位技术与传统腐蚀研究方法相结合是揭示镁合金点蚀机理的重要手段。同时,提出了可减缓镁合金点蚀的方法。最后,对未来镁合金点蚀的研究重点和方向进行了分析和展望,以期对解决镁合金点蚀问题起到一定的指导意义。

关键词 点蚀镁合金腐蚀环境微观结构微区原位技术    
Abstract

Magnesium alloys, as the lightest structural metallic material, have great potential for applications in transportation、electronic and aerospace industries. However, the poor corrosion resistance extremely limits their utilization. Pitting corrosion is the most common localized corrosion form, which is a kind of hidden danger and frequently causes damage to structural parts of Mg-alloys. The effect of corrosive environment and microstructure of alloys on the initiation and propagation of pitting corrosion are summarized based on the recent research progress at home and abroad while the in situ techniques of micro area measurement for pitting corrosion research are introduced. It follows that the combination of in situ techniques and traditional corrosion research methods is the most efficient approach to reveal the pitting corrosion behavior of Mg-alloys. Meantime, the possible methods for declining the pitting corrosion of Mg-alloys are suggested. Eventually, the research focus of pitting corrosion of Mg-alloys in the future is analyzed and forecasted, expecting to give some advices to improve the pitting corrosion-resistant of Mg-alloys.

Key wordspitting corrosion    magnesium alloy    corrosion environment    microstructure    in situ local technique
收稿日期: 2017-07-23     
ZTFLH:  TG174  
基金资助:国家自然科学基金 (51471174) 和国家重点研发计划课题 (2016YFB0301105)
作者简介:

作者简介 樊志民,男,1992年生,硕士生

引用本文:

樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 317-325.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.120      或      https://www.jcscp.org/CN/Y2018/V38/I4/317

图1  AM60点蚀机理模型示意图[14]
图2  AZ31B 浸泡在0.05 mol/L NaCl溶液中4 h后的光学显微照片和SVET测试局部电流密度分布[16]
图3  ZE41A-T5浸泡在0.001 mol/L NaCl溶液中18 h后的截面光学显微照片[23]
图4  AM30分别在盐雾和浸泡两种环境中腐蚀60 h后表面出现的不同尺寸的点蚀坑形貌 [26]
图5  Mg-3Zn分别浸泡在0.01 mol/L NaCl+0.01 mol/L Na2SO4,0.01 mol/L NaCl+0.05 mol/L Na2SO4及0.01 mol/L NaCl+0.1 mol/L Na2SO4溶液中6,12和16 h后的腐蚀形貌[28]
图6  AZ63镁合金浸泡在不同Cl-浓度和pH值的NaCl溶液中的电化学腐蚀行为[31]
图7  Mg-Zn-Y-Zr镁合金浸泡在0.1 mol/L NaCl溶液中10 min后的表面形貌
图8  Mg-Zn-Y-Zr镁合金浸泡在0.1 mol/L NaCl溶液中24 h后的表面二次电子像和背散射电子像[34]
图9  GW93合金浸泡在3.5%NaCl溶液中48 h后清除腐蚀产物的微观形貌[43]
图10  EW75合金在3.5%NaCl溶液中浸泡30 min未清除腐蚀产物和浸泡2 h并清除腐蚀产物后的截面形貌[44]
图11  不同Nd含量的AM60镁合金在3.5%NaCl溶液中浸泡48 h后失重检测后的表面形貌[48]
图12  铸态Mg-4Zn合金在3.5%NaCl溶液中浸泡4 h后的SEM像[49]
图13  固溶态Mg-4Zn合金在3.5%NaCl溶液中浸泡4 h的SEM像[49]
图14  自封孔微弧氧化膜及浸泡在3.5%NaCl溶液中330h后的宏观照片[54]
[1] Hu H, Yu A, Li N Y, et al.Potential magnesium alloys for high temperature die cast automotive applications: A review[J]. Mater. Manuf. Process., 2003, 18: 687
[2] Zhao Y, Dong G, Zhao B.Research progress of magnesium alloy application in aviation manufacturing[J]. Nonferrous Met. Eng., 2015, 5(2): 23(赵怿, 董刚, 赵博. 镁合金在航空领域应用的研究进展[J]. 有色金属工程, 2015, 5(2): 23)
[3] Zhang J, Zong Y, Fu P H, et al.Application and development prospect of magnesium alloys as biomedical materials[J]. J. Clin. Rehabilit. Tissue. Eng. Res., 2009, 13: 5747(张佳, 宗阳, 付彭怀等. 镁合金在生物医用材料领域的应用及发展前景[J]. 中国组织工程研究与临床康复, 2009, 13: 5747)
[4] Kulekci M K.Magnesium and its alloys applications in automotive industry[J]. Int. J. Adv. Manuf. Technol., 2008, 39: 851
[5] Zhai C Q, Zeng X Q, Ding W J, et al.Development and application of magnesium alloys in China[J]. Mater. Mech. Eng., 2001, 25(1): 6(翟春泉, 曾小勤, 丁文江等. 镁合金的开发与应用[J]. 机械工程材料, 2001, 25(1): 6)
[6] Liang J, Guo B G, Tian J, et al.Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy[J]. Appl. Surf. Sci., 2005, 252: 345
[7] Lunder O, Lein J E, Hesjevik S M, et al.Corrosion morphologies on magnesium alloy AZ91[J]. Mater. Corros., 1994, 45: 331
[8] Williams G, Grace R.Chloride-induced filiform corrosion of organic-coated magnesium[J]. Electrochim. Acta, 2011, 56: 1894
[9] Zhang X.Study on microstructure, properties and corrosion behavior of Mg-Y binary magnesium alloys [D]. Beijing: General Resear-ch Institute for Nonferrous Metals, 2013(张新. Mg-RE基稀土镁合金组织、性能与腐蚀机理研究 [D]. 北京: 北京有色金属研究总院, 2013)
[10] Kirby C.Galvanic and crevice corrosion effects in Magnox A180 alloy[J]. Corros. Sci., 1987, 27: 575
[11] Sharland S M, Jackson C P, Diver A J.A finite-element model of the propagation of corrosion crevices and pits[J]. Corros. Sci., 1989, 29: 1149
[12] Song G, Atrens A.Understanding magnesium corrosion—a framework for improved alloy performance[J]. Adv. Eng. Mater., 2003, 5: 837
[13] Makar G L, Kruger J.Corrosion of magnesium[J]. Int. Mater. Rev., 1993, 38: 138
[14] Zeng R C, Zhou W Q, Han E-H, et al.Effect of pH values on as-extruded magnesium alloy AM60[J]. Acta Metall. Sin., 2005, 41: 307(曾荣昌, 周婉秋, 韩恩厚等. pH值对挤压Mg合金AM60腐蚀的影响[J]. 金属学报, 2005, 41: 307)
[15] Karavai O V, Bastos A C, Zheludkevich M L, et al.Localized electrochemical study of corrosion inhibition in microdefects on coated AZ31 magnesium alloy[J]. Electrochim. Acta, 2010, 55: 5401
[16] Lamaka S V, Karavai O V, Bastos A C, et al.Monitoring local spatial distribution of Mg2+, pH and ionic currents[J]. Electrochem. Commun., 2008, 10: 259
[17] Williams G, McMurray H N. Localized corrosion of magnesium in chloride-containing electrolyte studied by a scanning vibrating electrode technique[J]. J. Electrochem. Soc., 2008, 155: C340
[18] Williams G, McMurray H N, Grace R. Inhibition of magnesium localised corrosion in chloride containing electrolyte[J]. Electrochim. Acta, 2010, 55: 7824
[19] Williams G, Dafydd H A L, Grace R. The localised corrosion of Mg alloy AZ31 in chloride containing electrolyte studied by a scanning vibrating electrode technique[J]. Electrochim. Acta, 2013, 109: 489
[20] Williams G, Birbilis N, McMurray H N. The source of hydrogen evolved from a magnesium anode[J]. Electrochem. Commun., 2013, 36: 1
[21] Zhou W Q, Shan D Y, Han E-H, et al. Phosphate conversion coating on diecast AZ91D and its corrosion resistance [J]. Mater. Sci. Forum, 2005, 488/489: 819
[22] Alvarez R B, Martin H J, Horstemeyer M F, et al.Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy[J]. Corros. Sci., 2010, 52: 1635
[23] Neil W C, Forsyth M, Howlett P C, et al.Corrosion of magnesium alloy ZE41-The role of microstructural features[J]. Corros. Sci., 2009, 51: 387
[24] Martin H J, Horstemeyer M F, Wang P T.Structure-property quantification of corrosion pitting under immersion and salt-spray environments on an extruded AZ61 magnesium alloy[J]. Corros. Sci., 2011, 53: 1348
[25] Martin H J, Horstemeyer M F, Wang P T.Comparison of corrosion pitting under immersion and salt-spray environments on an as-cast AE44 magnesium alloy[J]. Corros. Sci., 2010, 52: 3624
[26] Song W W, Martin H J, Hicks A, et al.Corrosion behaviour of extruded AM30 magnesium alloy under salt-spray and immersion environments[J]. Corros. Sci., 2014, 78: 353
[27] Song G L, Hapugoda S, John D S.Degradation of the surface appearance of magnesium and its alloys in simulated atmospheric environments[J]. Corros. Sci., 2007, 49: 1245
[28] Wang H X, Song Y W, Yu J, et al.Characterization of filiform corrosion of Mg-3Zn Mg alloy[J]. J. Electrochem. Soc., 2017, 164: C574
[29] Zhang X, Zhang K.Research progress on corrosion performance and mechanism of magnesium and its alloys[J]. Corros. Sci. Prot. Technol., 2015, 27: 78(张新, 张奎. 镁合金腐蚀行为及机理研究进展[J]. 腐蚀科学与防护技术, 2015, 27: 78)
[30] Hiromoto S, Yamamoto A, Maruyama N, et al.Influence of pH and flow on the polarisation behaviour of pure magnesium in borate buffer solutions[J]. Corros. Sci., 2008, 50: 3561
[31] Altun H, Sen S.Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy[J]. Mater. Des., 2004, 25: 637
[32] Zeng R C, Zhang J, Huang W J, et al.Review of studies on corrosion of magnesium alloys[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: S763
[33] Ferrando W A.Review of corrosion and corrosion control of magnesium alloys and composites[J]. J. Mater. Eng., 1989, 11: 299
[34] Song Y W, Shan D Y, Chen R S, et al.Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy[J]. Corros. Sci., 2010, 52: 1830
[35] Ko Y J, Chang D Y, Lim J D, et al. Effect of Mg17Al12 precipitate on corrosion behavior of AZ91D magnesium alloy [J]. Mater. Sci. Forum, 2003, 419-422: 851
[36] Song G L, Atrens A, Dargusch M.Influence of microstructure on the corrosion of diecast AZ91D[J]. Corros. Sci., 1998, 41: 249
[37] Liu X B, Shan D Y, Song Y W, et al.Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg-7Sn magnesium alloy[J]. Electrochim. Acta, 2011, 56: 2582
[38] Zhang T, Li Y, Wang F H.Roles of β phase in the corrosion process of AZ91D magnesium alloy[J]. Corros. Sci., 2006, 48: 1249
[39] Song G L, Atrens A, Wu X L, et al.Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corros. Sci., 1998, 40: 1769
[40] Li C, Sun J Y, Li Z D, et al.Microstructure and corrosion behavior of Al-10%Mg2Si cast alloy after heat treatment[J]. Mater. Charact., 2016, 122: 142
[41] Feng H, Liu S H, Du Y, et al.Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys[J]. J. Alloy. Compd., 2017, 695: 2330
[42] Song Y W, Shan D Y, Chen R S, et al.Corrosion characterization of Mg-8Li alloy in NaCl solution[J]. Corros. Sci., 2009, 51: 1087
[43] Song Y W, Shan D Y, Han E-H.Pitting corrosion of a rare earth Mg alloy GW93[J]. J. Mater. Sci. Technol., 2017, 33: 954
[44] Liu J H, Song Y W, Chen J C, et al.The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy[J]. Electrochim. Acta, 2016, 189: 190
[45] Argade G R, Panigrahi S K, Mishra R S.Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium[J]. Corros. Sci., 2012, 58: 145
[46] Hoog C O, Birbilis N, Zhang M X, et al.Surface grain size effects on the corrosion of magnesium[J]. Key. Eng. Mater., 2008, 384: 229
[47] Matsubara H, Ichige Y, Fujita K, et al.Effect of impurity Fe on corrosion behavior of AM50 and AM60 magnesium alloys[J]. Corros. Sci., 2013, 66: 203
[48] Zhang J L, Liu Y L, Zhou J, et al.Kinetic study on the corrosion behavior of AM60 magnesium alloy with different Nd contents[J]. J. Alloy. Compd., 2015, 629: 290
[49] Jia H M, Feng X H, Yang Y S.Influence of solution treatment on microstructure, mechanical and corrosion properties of Mg-4Zn alloy[J]. J. Magnes. Alloy., 2015, 3: 247
[50] Zhang J Y, Xu M, Teng X Y, et al.Effect of Gd addition on microstructure and corrosion behaviors of Mg-Zn-Y alloy[J]. J. Magnes.Alloy., 2016, 4: 319
[51] Zhou W Q, Shan D Y, Zeng R C, et al.Corrosion behavior and surface protection of magnesium alloys[J]. Mater. Prot., 2002, 35(7): 1(周婉秋, 单大勇, 曾荣昌等. 镁合金的腐蚀行为与表面防护方法[J]. 材料保护, 2002, 35(7): 1)
[52] Dong K H, Song Y W, Shan D Y, et al.Research progress of micro-arc oxidation technology on magnesium alloys[J]. Surf. Technol., 2015, 44(3): 74(董凯辉, 宋影伟, 单大勇等. 镁合金微弧氧化技术的研究进展[J]. 表面技术, 2015, 44(3): 74)
[53] Dong K H, Song Y W, Shan D Y, et al.Corrosion behavior of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy[J]. Corros. Sci., 2015, 100: 275
[54] Song Y W, Shan D Y, Chen R S, et al.Formation mechanism of phosphate conversion film on Mg-8.8Li alloy[J]. Corros. Sci., 2009, 51: 62
[55] Liu D, Song Y W, Shan D Y, et al.Self-healing coatings for magnesium alloys: A review[J]. Surf. Technol., 2016, 45(12): 28(刘丹, 宋影伟, 单大勇等. 镁合金自修复涂层研究进展[J]. 表面技术, 2016, 45(12): 28)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[3] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[9] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[11] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[12] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[13] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[14] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[15] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.