Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 403-408    DOI: 10.11902/1005.4537.2017.113
  研究报告 本期目录 | 过刊浏览 |
钛合金和铜合金管路电偶腐蚀数值仿真
王振华1(), 白杨1,2, 马晓1, 邢少华1
1 海洋腐蚀与防护重点实验室 中船重工七二五所 青岛 266101
2 中国石油大学 (华东) 机电工程学院 青岛 266580
Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters
Zhenhua WANG1(), Yang BAI1,2, Xiao MA1, Shaohua XING1
1 State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute,Qingdao 266101, China
2 College of Mechanical and Electrical Engineering, University of China Petroleum (East China), Qingdao 266580, China
全文: PDF(2420 KB)   HTML
摘要: 

针对典型船舶海水管路模型,采用以边界元法为基础的数值模拟仿真技术,对TA2钛合金和B10铜合金两种金属材料海水管路模型进行电偶腐蚀数值仿真。通过动电位极化曲线测试法分别测量B10铜镍合金、TA2钛合金在静态以及流态下的极化曲线,以其作为模拟边界条件,分别研究了材料间电偶腐蚀电位和电流密度的分布规律。同时研究了不同管径和海水流速工况下的管路电偶腐蚀规律。结果表明,在TA2和B10组成的电偶体系 (面积比1∶1) 中,B10作为阳极材料,且电连接处腐蚀最严重,约为自然腐蚀的4倍;电偶腐蚀速率与管径与介质流速都呈正相关关系。

关键词 钛合金铜合金海水管路电偶腐蚀数值仿真    
Abstract

The galvanic corrosion for the couple of TA2 Ti-alloy and Cu-Ni alloy, which was adopted typically for seawater pipeline of ship, was numerically simulated by means of the numerical simulation technique based on the boundary element method. In the meanwhile, the measured potentiodynamic polarization curves of Ti-alloy and Cu-alloy in static and flow seawater are used as reference as the boundary conditions for the numerical simulation. The following items are mainly concerned in the numerical simulation, namely the distributions of galvanic corrosion potential and the galvanic corrosion current density corresponding to the given parameters such as varying pipe radius, medium velocity and insulation grade etc. The results showed that the most severe corrosion area emerged in the place, where the two electrodes directly connected for the couple system of TA2 and B10 (area ratio 1:1), with a corrosion severity of about 4 times of that appeared in the case of natural corrosion. The galvanic corrosion rate shows a positive correlation with the pipe diameter and the media velocity.

Key wordsTi-alloy    Cu-alloy    seawater piping    galvanic corrosion    numerical simulation
收稿日期: 2017-07-13     
ZTFLH:  TG174.461  
作者简介:

作者简介 王振华,男,1988年生,工程师

引用本文:

王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 403-408.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.113      或      https://www.jcscp.org/CN/Y2018/V38/I4/403

Alloy Cu Ti Ni Mn Fe C Zn Si O H
B10 85.6 --- 10.13 0.83 1.71 --- 0.02 1.71 --- ---
TA2 --- 99.2 --- --- 0.3 0.1 --- 0.15 0.2 0.015
表1  B10铜镍合金和TA2钛合金的化学组成
图1  流道式动态介质电化学测试装置原理图
图2  腐蚀体系微元
图3  管-管式有限元模型尺寸模型和网格划分模型
图4  不同工况下B10合金和TA2钛合金的极化曲线
Alloy Corrosion potential / V Current density / mAm-2
TA2 -0.077 1.105×10-8
B10 -0.265 1.209×10-6
表2  B10铜镍合金和TA2钛合金的电化学参数
图5  海水管路偶合电位分布图
图6  电偶腐蚀过程中电化学参数随管路轴向的变化曲线
图7  电偶腐蚀过程中电化学参数随纵管路管径的变化曲线
图8  不同流速下海水管路模拟电位分布图
图9  静态/动态海水条件下电流密度随距离变化曲线
[1] Li L, Sun J K, Meng X J.Application state and prospects for titanium alloys[J]. Titanium Ind. Prog., 2004, (5): 19(李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景[J]. 钛工业进展, 2004, (5): 19)
[2] Yang Y L, Su H B, Guo D Z, et al.Research progress in titanium alloys for naval ships in China[J]. Chin. J. Nonffrous Met., 2010, 20(Suppl.): S1002(杨英丽, 苏航标, 郭荻子等. 我国舰船钛合金的研究进展[J]. 中国有色金属学报, 2010, 20(增刊): S1002)
[3] De Assis S L, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques[J]. Electrochim. Acta, 2006, 51: 1815
[4] Kuphasuk C, Oshida Y, Andres C J, et al.Electrochemical corrosion of titanium and titanium-based alloys[J]. J. Prosthet. Dent., 2001, 85: 195
[5] Fu Y Y, Song Y Q, Hui S X, et al.Research and application of typical aerospace titanium alloys[J]. Chin. J. Rare Met., 2006, 30: 850(付艳艳, 宋月清, 惠松骁等. 航空用钛合金的研究与应用进展[J]. 稀有金属, 2006, 30: 850)
[6] Xu L Y, Cheng Y F.Experimental and numerical studies of effectiveness of cathodic protection at corrosion defects on pipelines[J]. Corros. Sci., 2014, 78: 162
[7] Wang C L, Wu J H, Li Q F.Recent advances and prospect of galvanic corrosion in marine environment[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416(王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望[J]. 中国腐蚀与防护学报, 2010, 30: 416)
[8] Melchers R E, Wells T.Models for the anaerobic phases of marine immersion corrosion[J]. Corros. Sci., 2006, 48: 1791
[9] Diaz E S, Adey R.Optimising the location of anodes in cathodic protection systems to smooth potential distribution[J]. Adv. Eng. Softw., 2005, 36: 591
[10] Lee J M.Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochim. Acta, 2006, 51: 3256
[11] Mandel M, Krüger L.FE-simulation of galvanic corrosion susceptibility of two rivet joints verified by immersion tests[J]. Mater. Today, 2015, 2(Suppl.): S197
[12] Murer N, Oltra R, Vuillemin B, et al.Numerical modelling of the galvanic coupling in aluminium alloys: A discussion on the application of local probe techniques[J]. Corros. Sci., 2010, 52: 130
[13] Jia J X, Song G, Atrens A.Experimental measurement and computer simulation of galvanic corrosion of magnesium coupled to steel[J]. Adv. Eng. Mater., 2007, 9: 65
[14] Zamani N G.Boundary element simulation of the cathodic protection system in a prototype ship[J]. Appl. Math. Comput., 1988, 26: 119
[15] Miyasaka M, Takayama H, Amaya K, et al.Development of boundary element analysis technique for corrosion protection design[J]. Zairyo-to-Kankyo, 1998, 47: 156
[16] Liu G C, Sun W, Wang L, et al.Modeling cathodic shielding of sacrificial anode cathodic protection systems in seawater[J]. Mater. Corros., 2013, 64: 472
[17] Deshpande K B.Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution[J]. Corros. Sci., 2010, 52: 3514
[18] Mouanga M, Puiggali M, Tribollet B, et al.Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 88: 6
[19] Song G L, Johannesson B, Hapugoda S, et al.Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J]. Corros. Sci., 2004, 46: 955
[20] Thébault F, Vuillemin B, Oltra R, et al.Reliability of numerical models for simulating galvanic corrosion processes[J]. Electrochim. Acta, 2012, 82: 349
[21] Wang Z Y, Liu B S, Qiu J.Introduction to Engineering Electromagnetic [M]. Xi'an: Xi'an Jiaotong University Press, 2001(王仲奕, 刘补生, 邱捷. 《工程电磁场导论》习题详解 [M]. 西安: 西安交通大学出版社, 2001)
[22] Guo Y.Numerical simulation and optimization of cathodic protection for ship and ocean structure [D]. Harbin: Harbin Engineering University, 2013(郭宇. 船舶与海洋结构物阴极保护电位数值仿真与优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2013)
[1] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[2] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[3] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[4] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[5] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[6] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[7] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[8] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[9] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] 宋久龙, 陈文革, 雷楠楠. T2铜及QCr0.5铜合金无铬复配钼酸盐钝化研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 210-218.
[11] 付颖, 张艳, 包星宇, 张伟, 王福会, 辛丽. 钛合金表面耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 117-123.
[12] 郭宝会, 邱友绪, 李海龙. 人工神经网络在钛合金表面Ni-SiC复合电镀工艺中的应用[J]. 中国腐蚀与防护学报, 2017, 37(4): 389-394.
[13] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[14] 赵欣,胡裕龙,董赋,张晓东,王智峤. 湿态电绝缘对电偶腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[15] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.