Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 373-380    DOI: 10.11902/1005.4537.2017.111
  研究报告 本期目录 | 过刊浏览 |
ES150型纳米改性有机硅涂料的防护作用及其应用
徐涛涛1, 陈祝桥1, 田卫平1, 王成2(), 朱圣龙2, 王福会3, 张涛2, 陈明辉3
1 航空工业天津航空机电有限公司 天津 300308
2 中国科学院金属研究所金属腐蚀与防护实验室 沈阳 110016
3 东北大学材料科学与工程学院 沈阳 110819
Protective Performance of a Novel Silicone Coating ES150 Modified with Nano-particulate of Metal for AZ91D Mg-alloy
Taotao XU1, Zhuqiao CHEN1, Weiping TIAN1, Cheng WANG2(), Shenglong ZHU2, Fuhui WANG3, Tao ZHANG2, Minghui CHEN3
1 AVIC Tianjin Aviation Electro-mechanical Co., Ltd., Tianjin 300308, China
2 Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(6928 KB)   HTML
摘要: 

采用物理混合的方法制备了ES150型纳米改性有机硅涂料,并采用电化学阻抗技术、盐雾腐蚀实验和浸泡实验研究了涂层的防腐蚀性能。结果表明,清漆涂层存在大量的微孔,严重影响涂层的防护性能。纳米改性复合涂层的致密度显著提高,经6000 h盐水浸泡和5000 h中性盐雾腐蚀实验,涂层未出现起泡、剥落等破坏,涂层下的基体镁合金未发生腐蚀。在浸泡过程中涂层的阻抗保持在109 Ω·cm2以上,具有优异的耐腐蚀性能。SO2加速腐蚀实验表明,ES150型纳米复合有机硅涂料实现了对飞机零部件在恶劣环境中的有效防护,实际应用效果显著。

关键词 有机硅防护涂层SO2腐蚀    
Abstract

A novel protective coating, namely ES150 silicone modified with nano-particulate of metal was prepared by physical blending process, which was further applied on AZ91D Mg-alloy, and then the corrosion resistance of the coated alloy was evaluated by electrochemical impedance spectroscopy (EIS), immersion test in 3.5% (mass fraction) NaCl solution and neutral salt spray exposure. The results indicated that lots of micropores could be observed within the silicone lacquer coating, which deteriorates its protective efficiency. In contrast, the number of micropores decreased greatly for the modified silicone coatings with nano-particulate of metal. The modified ES150 coatings can withstand 6000 h immersion in 3.5%NaCl solution and 5000 h neutral salt spray exposure without blistering, peeling off or corrosion. The impedance of the coatings is larger than 109 Ω·cm2 during immersion in 3.5%NaCl solution. The SO2 accelerated corrosion experiments revealed that the coatings provide sufficient protectiveness for airplane workpieces.

Key wordsorganosilion    protective coating    sulfur dioxide    corrosion
收稿日期: 2017-07-06     
ZTFLH:  TQ630  
基金资助:国家自然科学基金 (51531007)
作者简介:

作者简介 徐涛涛,男,1984年生,硕士,工程师

引用本文:

徐涛涛, 陈祝桥, 田卫平, 王成, 朱圣龙, 王福会, 张涛, 陈明辉. ES150型纳米改性有机硅涂料的防护作用及其应用[J]. 中国腐蚀与防护学报, 2018, 38(4): 373-380.
Taotao XU, Zhuqiao CHEN, Weiping TIAN, Cheng WANG, Shenglong ZHU, Fuhui WANG, Tao ZHANG, Minghui CHEN. Protective Performance of a Novel Silicone Coating ES150 Modified with Nano-particulate of Metal for AZ91D Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 373-380.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.111      或      https://www.jcscp.org/CN/Y2018/V38/I4/373

图1  有机硅清漆涂层和纳米改性涂层的SEM像
图2  清漆涂层的Nyquist图及模值和相位角变化曲线
图3  纳米改性有机硅涂层的Nyquist图及模值和相位角曲线
图4  涂层等效电路
图5  Rc,Cc和Rct随浸泡时间的变化
图6  纳米改性有机硅涂层浸泡6000 h后和盐雾腐蚀5000 h后的宏观形貌
图7  涂装ES150纳米改性有机硅涂层的AZ91D镁合金经盐雾腐蚀5000 h和浸泡6000 h后以及清漆涂层浸泡5668 h后的SEM像
图8  TOPS涂层、钝化/WD40涂层、二次化学镀镍、云石(高磷)化学镀镍/WD40涂层和ES150纳米改性有机硅涂层经120 h SO2腐蚀后的宏观形貌
[1] Zhu Z P, Lu H W, Tang X Y, et al.Corrosion characteristics of 15CrMoG steel a supercritical unit water-wall tube material in waters of different water chemistry[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 243(朱志平, 陆海伟, 汤雪颖等. 不同水工况下超临界机组水冷壁管材料的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2014, 34: 243)
[2] Yang Q, Luo J L.Effects of hydrogen and tensile stress on the breakdown of passive films on type 304 stainless steel[J]. Electrochim. Acta, 2001, 46: 851
[3] Li P, Qin P, Pang S J, et al.Effect of SO2 on the corrosion behaviors of CoCrFeNiTi0.5 alloy anti-alkali metal sulfate[J]. Rare Met. Mater Eng., 2017, 46: 680(李萍, 秦鹏, 庞胜娇等. SO2对CoCrFeNiTi0.5合金耐碱金属硫酸盐腐蚀行为的影响[J]. 稀有金属材料与工程, 2017, 46: 680)
[4] Gilewicz-Wolter J, Żurekt Z.Corrosion of iron in sulfur dioxide at 0.1 MPa[J]. Oxid. Met., 1996, 45: 469
[5] Oh S J, Cook D C, Townsend H E.Atmospheric corrosion of different steels in marine, rural and industrial environments[J]. Corros. Sci., 1999, 41: 1687
[6] Sasaki T, Kanagawa R, Ohtsuka T, et al.Corrosion products of tin in humid air containing sulfur dioxide and nitrogen dioxide at room temperature[J]. Corros. Sci., 2003, 45: 847
[7] Hellström K, Hall J, Malmberg P, et al.Mitigation of fireside corrosion in power plants: The combined effect of sulfur dioxide and potassium chloride on the corrosion of a FeCrAl alloy[J]. Energy Fuels, 2014, 28: 6116
[8] Sun S Q, Zheng Q F, Li D F, et al.Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51: 719
[9] Wang C, Wang Z Y, Ke W.Initial corrosion behavior of carbon steel Q235 in the atmosphere with SO2[J]. Acta Metall. Sin., 2008, 44: 729(汪川, 王振尧, 柯伟. Q235碳钢在SO2气体中的初期腐蚀行为[J]. 金属学报, 2008, 44: 729)
[10] Oguzie E E.Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel[J]. Corros. Sci., 2008, 50: 2993
[11] Masahashi N, Kimura G, Oku M, et al.Corrosion behavior of iron-aluminum alloys and its composite steel in sulfuric acid[J]. Corros. Sci., 2006, 48: 829
[12] Khaled K F.Experimental and atomistic simulation studies of corrosion inhibition of copper by a new benzotriazole derivative in acid medium[J]. Electrochim. Acta, 2009, 54: 4345
[13] Barletta M, Venettacci S, Puopolo M, et al.Design and manufacturing of protective barriers on Fe 430 B substrates by phenyl methyl polysiloxane coatings: micromechanical response, chemical inertness, and corrosion resistance[J]. J. Coat. Technol. Res., 2015, 12: 333
[14] Balakrishnan V, Rau S R, Kasi R, et al.Evaluation of heat resistant properties of silicone-acrylic polyol coating by electrochemical methods[J]. Pigm. Resin. Technol., 2013, 42: 117
[15] Xiao J, Chen J M, Zhou H D, et al. Study of several organic resin coatings as anti-ablation coatings for supersonic craft control actuator [J]. Mater. Sci. Eng., 2007, A452/453: 23
[16] Mišković-Stanković V B, Zotović J B, Kačarević-Popović Z, et al. Corrosion behaviour of epoxy coatings electrodeposited on steel electrochemically modified by Zn-Ni alloy[J]. Electrochim. Acta, 1999, 44: 4269
[17] Stratmann M, Feser R, Leng A.Corrosion protection by organic films[J]. Electrochim. Acta, 1994, 39: 1207
[18] Souto R M, González-García Y, Izquierdo J, et al.Examination of organic coatings on metallic substrates by scanning electrochemical microscopy in feedback mode: Revealing the early stages of coating breakdown in corrosive environments[J]. Corros. Sci., 2010, 52: 748
[19] Grundmeier G, Schmidt W, Stratmann M.Corrosion protection by organic coatings: Electrochemical mechanism and novel methods of investigation[J]. Electrochim. Acta, 2000, 45: 2515
[20] Dong Y H, Zhou Q.Relationship between ion transport and the failure behavior of epoxy resin coatings[J]. Corros. Sci., 2014, 78: 22
[21] Ramezanzadeh B, Ahmadi A, Mahdavian M.Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets[J]. Corros. Sci., 2016, 109: 182
[22] Ramezanzadeha B, Niroumandrad S, Ahmadi A, et al.Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide[J]. Corros. Sci., 2016, 103: 283
[23] Hirschorn B, Orazem M E, Tribollet B, et al.Determination of effective capacitance and film thickness from constant-phase-element parameters[J]. Electrochim. Acta, 2010, 55: 6218
[24] Stafford O A, Hinderliter B R, Croll S G.Electrochemical impedance spectroscopy response of water uptake in organic coatings by finite element methods[J]. Electrochim. Acta, 2006, 52: 1339
[25] Behzadnasab M, Mirabedini S M, Kabiri K, et al.Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution[J]. Corros. Sci., 2011, 53: 89
[26] Battocchi D, Simões A M, Tallman D E, et al.Electrochemical behaviour of a Mg-rich primer in the protection of Al alloys[J]. Corros. Sci., 2006, 48: 1292
[27] Funke W.Problems and progress in organic coatings science and technology[J]. Prog. Org. Coat., 1997, 31: 5
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.