Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 397-402    DOI: 10.11902/1005.4537.2017.096
  研究报告 本期目录 | 过刊浏览 |
初始pH值和Cl-浓度对CuCl水解的影响
和佳乐, 王菊琳()
北京化工大学材料科学与工程学院 文物保护领域科技评价研究国家文物局重点科研基地 北京 100029
Impacts of Initial pH and Cl- Concentration on Nantokite Hydrolysis
Jiale HE, Julin WANG()
Key Research Base of State Administration of Cultural Heritage for Evaluation of Science and Technology Research in Cultural Relics Protection Field, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(2331 KB)   HTML
摘要: 

通过设定不同初始pH值、Cl-浓度的溶液环境,观测溶液颜色、记录pH值变化,运用XRD检测产物成分,研究CuCl水解反应。结果表明:初始pH值 (用H2SO4调节) 为2时,水解产物为含铜离子的溶液;初始pH值在2.4~3.0时,CuCl水解产物为Cu4SO4(OH)6·2H2O;初始pH值在3.3~7.0时,CuCl水解产物为Cu2(OH)3Cl,初始pH值影响CuCl水解过程和最终产物。Cl-浓度较小时,CuCl水解过程有Cu2O生成阶段;随Cl-浓度增大,Cu2O生成过程缩短,最终生成Cu2(OH)3Cl;当Cl-浓度足够大时,CuCl水解直接生成Cu2(OH)3Cl,初始Cl-浓度影响CuCl水解进程。

关键词 青铜病CuCl水解化学过程沉淀    
Abstract

Nantokite hydrolysis is the key reaction in the progression of bronze disease on cupreous objects. This transformation was researched in solutions of 0.15%~4%NaCl with initial pH value 2~7 (adjusted with 0.5 mol/L H2SO4). The solution color and the pH change were recorded, while the final products of nantokite hydrolysis were characterized by X-ray diffraction analysis. The solution became Cu ion-containing electrolyte after hydrolysis of nantokite in the solution with pH=2.0. The hydrolysis product is Cu4SO4(OH)6·2H2O in solutions with pH=2.4~3.0. However the hydrolysis product is Cu2(OH)3Cl in solutions with pH=3.3~7.0. The procession varies with the concentration of Cl-, namely in solutions with low Cl- cocentration the hydrolysis of nantokite generates cuprite at first and then gradually Cu2(OH)3Cl with the increasing Cl- concentration. In solutions with higher Cl- concentration, the hydrolysis of nantokite generates directly Cu2(OH)3Cl.

Key wordsbronze disease    nantokite    hydrolysis    chemical processes    precipitation
收稿日期: 2017-06-23     
ZTFLH:  TG174.1  
基金资助:国家自然科学基金 (51471020)
作者简介:

作者简介 和佳乐,女,1991年生,硕士生

引用本文:

和佳乐, 王菊琳. 初始pH值和Cl-浓度对CuCl水解的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
Jiale HE, Julin WANG. Impacts of Initial pH and Cl- Concentration on Nantokite Hydrolysis. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 397-402.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.096      或      https://www.jcscp.org/CN/Y2018/V38/I4/397

图1  不同初始pH值对CuCl水解颜色的影响
图2  各初始pH值下水解溶液pH值随时间变化曲线
图3  各初始pH值下CuCl最终水解产物XRD谱
图4  初始pH值为2时澄清液蒸发后产物的XRD谱
图5  不同Cl-浓度对CuCl水解颜色的影响
图6  不同Cl-浓度下溶液pH值随时间的变化曲线
图7  不同Cl-浓度下CuCl最终水解产物的XRD谱
[1] Pan L.The developing history for conservation of bronze objects and some questions[J]. Sci. Technol. Res. Cult. Rel., 2004, 2: 1(潘路. 青铜器保护简史与现存问题[J]. 文物科技研究, 2004, 2: 1)
[2] Wang J L, Lv G C, Xu C C.The research progress of corrosion mechanism of bronze cultural relics [A]. Proceedings of the Eighth national Conference on Archaeology and Conservation of Cultural Relics (Chemistry)[C]. Guangzhou, 2004: 9(王菊琳, 吕国诚, 许淳淳. 青铜文物腐蚀机理研究进展 [A]. 第八届全国考古与文物保护 (化学) 学术会议论文集[C]. 广州, 2004: 9)
[3] Scott D.Copper and Bronze in Art: Corrosion, Colorants, Conservation[M]. Los Angeles: Getty Conservation Institute, 2002: 37
[4] Alfantazi A M, Ahmed T M, Tromans D.Corrosion behavior of copper alloys in chloride media[J]. Mater. Des., 2009, 30: 2425
[5] Robbiol A L, Blengino L J M, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys[J]. Corros. Sci., 1998, 40: 2083
[6] Kear G, Barker B D, Walsh F C.Electrochemical corrosion of unalloyed copper in chloride media-a critical review[J]. Corros. Sci., 2004, 46: 109
[7] Chmielová M, Seidlerová J, Weiss Z.X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions[J]. Corros. Sci., 2003, 45: 883
[8] Wang J L, Xu C C, Lv G H.Formation processes of CuCl and regenerated Cu crystals on bronze surfaces in neutral and acidic media[J]. Appl. Surf. Sci., 2006, 252: 6294
[9] Scott D A.Bronze disease: A review of some chemical problems and the role of relative humidity[J]. J. Am. Inst. Conserv., 1990, 29: 193
[10] Doménech-Carbó A, Doménech-Carbó M T, Costa P V. Electrochemical Basis of Corrosion of Cultural Objects[M]. Berlin: Springer, 2009: 12
[11] Wang T R, Wang J L, Wu Y Q.The inhibition effect and mechanism of l-cysteine on the corrosion of bronze covered with a CuCl patina[J]. Corros. Sci., 2015, 97: 89
[12] Dowestt M, Adriaens A, Martin C, et al.The use of synchrotron X-rays to observe copper corrosion in real time[J]. Anal. Chem., 2012, 84: 4866
[13] De Oliveira F J R, Lago D C B, Senna L F, et al. Study of patina formation on bronze specimens[J]. Mater. Chem. Phys., 2009, 115: 761
[14] Grayburn R, Dowsett M, Hand M, et al.Tracking the progression of bronze disease-A synchrotron X-ray diffraction study of nantokite hydrolysis[J]. Corros. Sci., 2015, 91: 220
[15] Di Carlo G, Giuliani C, Riccucci C, et al.Artificial patina formation onto copper-based alloys: Chloride and sulphate induced corrosion processes[J]. Appl. Surf. Sci., 2017, 421: 120
[16] Kong D C, Dong C F, Fang Y H, et al.Copper corrosion in hot and dry atmosphere environment in Turpan, China[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1721
[17] Xu C C, Pan L.Protection of Metal Cultural Relic [M]. Beijing: Chemical Industry Press, 2012: 67(许淳淳, 潘路. 金属文物保护—全程技术方案 [M]. 北京: 化学工业出版社, 2012: 67)
[18] Zhang X M, Chai F H, Wang S L, et al.Research progress of acid precipitation in China[J]. Res. Environ. Sci., 2010, 23: 527(张新民, 柴发合, 王淑兰等. 中国酸雨研究现状[J]. 环境科学研究, 2010, 23: 527)
[19] Lin Y.The research on corrosion behavior of bronze covered with Patina in the environment simulated solutions [D]. Shanghai: East China University of Science and Technology, 2016: 8(林颖. 带锈青铜文物材料在环境模拟液中的腐蚀发展行为研究[D]. 上海: 华东理工大学, 2016: 8)
[20] Wang J L, Xu C C, Yu M.Corrosion behavior of patinated bronze and its protection in atmosphere[J]. Corros. Sci. Prot. Technol., 2005, 17: 324(王菊琳, 许淳淳, 于淼. 已锈蚀青铜在大气环境中的腐蚀发展及其保护研究[J]. 腐蚀科学与防护技术, 2005, 17: 324)
[21] Fitzgerald K P, Nairn J, Skennerton G, et al.Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper[J]. Corros. Sci., 2006, 48: 2480
[22] Wang T R.The protection of environmental friendly corrosion inhibitors on patinated bronze [D]. Beijing: Beijing University of Chemical Technology, 2016: 1(王天然. 环境友好型缓蚀剂对带锈青铜的保护 [D]. 北京: 北京化工大学, 2016: 1)
[23] Zhong Z Q. Mei G G.A themodynamic study on the selective chlorinational process of the complex tungsten mid concentrate[J]. J. CSIMM, 1986, (5): 21(钟竹前, 梅光贵. 难溶氯化物沉淀最佳化条件和铜歧化反应在氯化溶液中的平衡[J]. 中南矿业学院学报, 1986, (5): 21)
[24] Veleva L, Quintana P, Ramanauskas R, et al.Mechanism of copper patina formation in marine environments[J]. Electrochim. Acta, 1996, 41: 1641
[25] Nassau K, Gallagher P K, Miller A E, et al.The characterization of patina components by X-ray diffraction and evolved gas analysis[J]. Corros. Sci., 1987, 27: 669
[26] Shen L.Research of bronze powder rust oxidation closed process [D]. Xi'an: Northwest University, 2008: 2(沈璐. 青铜器粉状锈氧化封闭法工艺研究 [D]. 西安: 西北大学, 2008: 2)
[27] Chen S Y, Zhang R, Wang N, et al.Research on the formation and the mechanism of transformation in harmful, deeply rusted bronze relics[J]. Sci. Conserv. Archaeol., 2014, 26(3): 47(陈淑英, 张然, 王辇等. 关于青铜文物深层有害锈形成与转化的分析研究[J]. 文物保护与考古科学, 2014, 26(3): 47)
[28] Frost R L.Raman spectroscopy of selected copper minerals of significance in corrosion[J]. Spectrochim. Acta Mol. Biomol. Spectr., 2003, 59A: 1195
[29] Liu W H, Mcphail D C, Brugger J.An experimental study of copper (I)-chloride and copper (I)-acetate complexing in hydrothermal solutions between 50 ℃ and 250 ℃ and vapor-saturated pressure[J]. Geochim. Cosmochim. Acta, 2001, 65: 2937
[30] Fritz J J.Chloride complexes of copper (I) chloride in aqueous solution[J]. J. Phys. Chem., 1980, 84: 2241
[31] Sherman D M.Complexation of Cu+ in hydrothermal NaCl brines:Ab initio molecular dynamics and energetics[J]. Geochim. Cosmochim. Acta, 2007, 71: 714
[1] 代陈林,李茂东,杨波,乔越,朱志平. 中央空调环保复合型阻垢缓蚀剂的筛选及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 407-414.
[2] 周贤良,聂轮,华小珍,刘智勇,崔霞,彭新元. 固溶温度对15-5PH不锈钢耐点蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 333-337.
[3] 李文芳,张凯,杜军. 铝合金Ce-Mn转化膜溶液中HF2-离子作用机理研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 39-43.
[4] 汪兵; 刘清友; 王向东; 贾书君; 董瀚 . 稀土铈和镧对碳钢在氯化钠溶液中缓蚀机理的研究[J]. 中国腐蚀与防护学报, 2007, 27(3): 151-155 .
[5] 刘倞; 胡吉明; 张鉴清; 曹楚南 . 金属表面硅烷化防护处理及其研究现状[J]. 中国腐蚀与防护学报, 2006, 26(1): 59-64 .