Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 326-332    DOI: 10.11902/1005.4537.2017.079
  研究报告 本期目录 | 过刊浏览 |
假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响
邓三喜1, 闫小宇1, 柴柯1(), 吴进怡1, 史洪微2
1 海南大学材料与化工学院 热带岛屿资源先进材料教育部重点实验室 海口 570228
2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating
Sanxi DENG1, Xiaoyu YAN1, Ke CHAI1(), Jinyi WU1, Hongwei SHI2
1 Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Material and Chemical Engineering College, Hainan University, Haikou 570228, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2953 KB)   HTML
摘要: 

利用微生物分析、EIS、SEM和FTIR等方法研究了海水中假单胞菌对聚硅氧烷树脂清漆涂层的分解及防腐蚀行为的影响。结果表明,浸泡时间在1 d内时,涂层在含假单胞菌海水中的腐蚀阻抗明显下降,而在无菌海水中则变化很小,表明假单胞菌在浸泡初期能够极大地降低涂层的腐蚀阻抗并能分解涂层。而随着浸泡时间的延长,两种环境下涂层的腐蚀阻抗均明显减小。涂层在含假单胞菌海水中浸泡1~30 d的腐蚀阻抗的减少量明显大于其在无菌海水中的减小量,表明浸泡30 d后假单胞菌对涂层结构造成了破坏。而当在长时间浸泡情况下,假单胞菌对于涂层腐蚀阻抗仅有轻微影响。无论是在无菌海水还是在含假单胞菌海水中,通过拟合电化学数据得到的等效电路模型中仅有一个时间常数。SEM和FTIR分析结果表明,浸泡30 d时假单胞菌能在一定程度上分解涂层。

关键词 假单胞菌电化学阻抗谱分解有机涂层    
Abstract

The effect of Pseudomonas sp. on the decomposition and anticorrosion behavior of polysiloxane varnish coating was investigated by means of microbiological analysis, EIS, SEM and FTIR. Results showed that after 1 d immersion in seawater with Pseudomonas sp. the corrosion resistance of the coating decreased obviously, while which changed little in the sterile seawater, indicating that at the initial immersion stage Pseudomonas sp. could significantly decrease the corrosion resistance of the coating, while decompose the coating. With the extension of immersion time, both in the Pseudomonas sp. inoculated seawater and the sterile seawater, the corrosion resistance of coatings decreased obviously. While for the immersion period of 1~30 d, the decrease of corrosion resistance of coatings was obviously higher in the former seawater, suggesting that Pseudomonas sp. caused damages to the coating. For long term immersion, Pseudomonas sp. exhibits only slight effect on the corrosion resistance of the coating. Additionally, whether seawater with or without Pseudomonas sp., only one time constant could be observed in the EEC obtained by fitting the EIS data. The SEM and FTIR results revealed that the decomposition of coatings could occur to a certain extent for 30 d immersion in the Pseudomonas sp. inoculated seawater.

Key wordsPseudomonas sp.    electrochemical impedance spectroscopy    decomposition    organiccoating
收稿日期: 2017-05-17     
ZTFLH:  TG174.4  
基金资助:海南省自然科学基金 (517064),国家自然科学基金 (51761011,51261006,51161007和50761004) 及国家重点基础研究发展计划 (2014CB643304)
作者简介:

作者简介 邓三喜,男,1994年生,硕士生

引用本文:

邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 326-332.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.079      或      https://www.jcscp.org/CN/Y2018/V38/I4/326

图1  假单胞菌在海水中的生长曲线
图2  聚硅氧烷清漆涂层在无菌海水和假单胞菌海水溶液中的Nyquist图和Bode图
图3  聚硅氧烷树脂清漆涂层暴露于不同环境时EIS的等效电路
System Immersion time Rc / Ωcm2 Cc / F
Sterile seawater 1 h 4.614×109 6.428×10-11
1 d 4.590×109 6.198×10-11
3 d 3.939×109 8.667×10-11
5 d 8.425×108 1.012×10-10
13 d 9.275×108 8.324×10-10
30 d 1.172×109 1.084×10-10
90 d 5.913×108 9.312×10-10
120 d 6.877×108 9.901×10-10
Seawater inoculated with Pseudomonas sp. 1 h 6.769×109 6.813×10-11
1 d 3.202×109 6.837×10-11
3 d 3.136×109 8.156×10-11
5 d 3.240×109 1.192×10-10
13 d 3.774×109 9.855×10-9
30 d 4.044×108 9.628×10-9
90 d 6.660×108 8.754×10-11
120 d 7.119×108 1.166×10-10
表1  等效电路中各元件参数拟合值
图4  未浸泡、经无菌海水和含假单胞菌海水浸泡30 d后的涂层表面SEM像
图5  未浸泡、经无菌海水和含假单胞菌海水浸泡30 d后涂层的FTIR谱
[1] Chen D B, Hu Y L, Chen X Q.Progress of microbial influenced corrosion in warship[J]. J. Naval Univ. Eng., 2006, 18(1): 79(陈德斌, 胡裕龙, 陈学群. 舰船微生物腐蚀研究进展[J]. 海军工程大学学报, 2006, 18(1): 79)
[2] Tambe S P, Jagtap S D, Chaurasiya A K, et al.Evaluation of microbial corrosion of epoxy coating by using sulphate reducing bacteria[J]. Prog. Org. Coat., 2016, 94: 49
[3] Sheng X X, Ting Y P, Pehkonen S O.The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316[J]. Corros. Sci., 2007, 49: 2159
[4] Belov D V, Sokolova T N, Smirnov V F, et al.Corrosion of aluminum and its alloys under the effect of microscopic fungi[J]. Prot. Met., 2008, 44: 737
[5] Iverson W P.Microbial corrosion of metals[J]. Adv. Appl. Microbiol., 1987, 32: 1
[6] Xu J L, Huang T L, Tang Z X, et al.Isolation of petroleum degradation bacteria and its application to bioremediation of petroleum-contaminated soil[J]. Acta Sci. Circumst., 2007, 27: 622(徐金兰, 黄廷林, 唐智新等. 高效石油降解菌的筛选及石油污染土壤生物修复特性的研究[J]. 环境科学学报, 2007, 27: 622)
[7] Shien W Y, Chiu X H.Diversity of marine vibrios[J]. World Sci-Tech R&D, 2005, (2): 34(谢文阳, 邱秀慧. 海洋弧菌多样性[J]. 世界科技研究与发展, 2005, (2): 34)
[8] Díaz E, Ferrández A, Prieto M A, et al.Biodegradation of aromatic compounds by Escherichia coli[J]. Microbiol. Mol. Biol. Rev., 2001, 65: 523
[9] Semple K T, Cain R B, Schmidt S.Biodegradation of aromatic compounds by microalgae[J]. FEMS Microbiol. Lett., 1999, 170: 291
[10] Li C, Zhang C Y, Chen S H, et al. Gene cloning and function analysis involved in the biodegradation of aromatic compounds by bacillus NAPZ [J]. Adv. Mater. Res., 2013, 726-731: 373
[11] Liu H W, Fu C Y, Gu T Y, et al.Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corros. Sci., 2015, 100: 484
[12] Gubner R, Beech I B.The effect of extracellular polymeric substances on the attachment of Pseudomonas NCIMB 2021 to AISI 304 and 316 stainless steel[J]. Biofouling, 2000, 15: 25
[13] Guan F, Zhai X F, Duan J Z, et al.Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy[J]. Surf. Coat. Technol., 2017, 316: 171
[14] Zhang Z Z, Hou Z W, Yang C Y, et al.Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8[J]. Bioresource Technol., 2011, 102: 4111
[15] Allsop P J, Chisti Y, Moo-Young M, et al.Dynamics of phenol degradation by Pseudomonas putida[J]. Biotechnol. Bioeng., 1993, 41: 572
[16] Nanda S, Sahu S S, Abraham J.Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas (spp.)[J]. J. Appl. Sci. Environ. Manage., 2010, 14(2): 57
[17] Yu L, Duan J Z, Du X Q, et al.Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry[J]. Electrochem. Commun., 2013, 26: 101
[18] Bierwagen G P, He L, Li J, et al.Studies of a new accelerated evaluation method for coating corrosion resistance—thermal cycling testing[J]. Prog. Org. Coat., 2000, 39: 67
[19] Peres R S, Armelin E, Moreno-Martínez J A, et al. Transport and antifouling properties of papain-based antifouling coatings[J]. Appl. Surf. Sci., 2015, 341: 75
[1] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[4] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[8] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[10] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[11] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[13] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[14] 王娜娜, 王锋涛, 常亮, 朱志平. 锅炉补给水中典型有机物分解规律及其对低压缸叶片腐蚀特性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 597-604.
[15] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.