Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (3): 289-295    DOI: 10.11902/1005.4537.2017.078
  研究报告 本期目录 | 过刊浏览 |
添加DMF对TiO2薄膜光生阴极保护性能影响研究
邱萍(), 杨连捷, 宋玉, 杨鸿飞
中国石油大学 (北京) 材料科学与工程系 油气装备材料失效与腐蚀防护北京市重点实验室 北京 102249
Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior
Ping QIU(), Lianjie YANG, Yu SONG, Hongfei YANG
Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facilities, Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China
全文: PDF(1401 KB)   HTML
摘要: 

在钛酸正丁酯水解溶胶中加入二甲基酰胺 (DMF),通过浸渍-提拉法制备了TiO2膜。应用XRD、Raman光谱、SEM和接触角测量等表征手段对比分析了无添加和添加DMF所制备TiO2膜在组成、微观形貌以及表面润湿性等方面的特性,并结合光电化学技术研究了该体系在紫外光作用下的光响应特征和光生阴极保护能力。结果显示,DMF的添加有效提升了TiO2膜的连续致密性,在光照作用下可对基体金属提供稳定的阴极保护,且表现出更加优异的暗态防护性能,有效阻止溶液中Cl-在膜层中的传输。

关键词 光生阴极保护改性TiO2不锈钢DMF    
Abstract

TiO2 film surface normally presents micro porous after annealing treatment, which is one of the key factors on restraining the application of photogenerated cathodic protection of it. This study has prepared DMF modified TiO2 film by sol-gel and dip-coating method on the substrate of FTO glass. The influence of DMF on the corresponding film composition, microstructure and surface wettability are explored by XRD, Raman spectroscopy and SEM. The property of photo response and cathodic protection behavior of the film coupled with 316 stainless steel are studied under UV illumination. The results indicated that the addition of DMF has essentially improved the compact continuity of the TiO2 film, which supplies effective inhibition on the corrosive ions migration to the substrate. And the modified film presents comparable photogenerated cathodic protection property to that of pure TiO2 film.

Key wordsphotogenerated cathodic protection    modified TiO2 film    stainless steel    DMF
收稿日期: 2017-05-16     
ZTFLH:  TG174.41  
基金资助:国家自然科学基金 (51301199) 和中国石油大学优秀青年教师研究项目 (2462015YQ0602)
作者简介:

作者简介 邱萍,女,1979年生,副教授

引用本文:

邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 289-295.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.078      或      https://www.jcscp.org/CN/Y2018/V38/I3/289

图1  退火处理后纯TiO2粉末和添加DMF的TiO2粉末的XRD谱以及对应的 (101) 晶面衍射峰的拟合结果
图2  退火处理后纯TiO2粉末和添加DMF的TiO2粉末的Raman光谱以及对应的151 cm-1处Raman特征峰
图3  溶胶-凝胶法制备的纯TiO2溶胶和添加了DMF的TiO2溶胶经4 h陈化后的照片
图4  退火处理后纯TiO2膜和添加DMF的TiO2膜的SEM像
图5  退火处理后纯TiO2膜和添加DMF的TiO2膜表面水的接触角
图6  光照和暗态下与纯TiO2膜和添加DMF的TiO2膜耦连的316L不锈钢电极在3.5%NaCl溶液中的光生电位随时间变化关系
图7  在3.5%NaCl溶液中316L不锈钢电极及其与两种薄膜相耦合后,在光照和暗态条件下测得的EIS谱
图8  3.5%NaCl溶液中316L不锈钢电极以及与两种薄膜相耦合后阻抗谱的拟合等效电路
Condition Rs
Ω·cm2
CPE1 R1
Ω·cm2
CPE2 R2
kΩ·cm2
W-R
kΩ·cm2
Y0 / 103 Ω-1·cm-2·sn n Y0 / 104 Ω-1·cm-2·sn n
No photoanode 1.12 0.84 0.581 20.3 2.12 0.812 16.7 ---
Pure TiO2, illuminated 1.84 4.13 0.863 23.1 7.94 0.775 2.61 7.11
TiO2/DMF, illuminated 13.6 1.26 0.916 40.5 7.76 0.757 2.33 6.39
Pure TiO2, dark 1.82 2.36 0.752 23.3 5.97 0.826 17.0 4.87
TiO2/DMF, dark 13.8 8.33 0.824 85.5 4.71 0.891 20.4 3.32
表1  电化学阻抗谱拟合结果
图9  316L不锈钢电极在NaCl溶液中的极化曲线
Condition βa
mV·dec-1
Βc
mV·dec-1
Icorr
μA·cm-2
Ecorr
mV·SCE-1
No photoanode 158.4 -68.9 0.589 0.338
Pure TiO2,illuminated 120.7 -93.4 5.252 -183
TiO2/DMF,illuminated 145.5 -100.2 5.941 -195
Pure TiO2, dark 154.3 -99.2 0.721 -36.3
TiO2/DMF, dark 127.8 -102.7 0.101 -38.2
表2  极化曲线拟合结果
[1] Yamashita M, Miyuki H, Matsuda Y, et al.The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corros. Sci., 1994, 25: 283
[2] Hao L, Zhang S X, Dong J H, et al.Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere[J]. Corros. Sci., 2012, 59: 270
[3] Wang Z F, Liu J R, Wu L X, et al.Study of the corrosion behavior of weathering steels in atmospheric environments[J]. Corros. Sci., 2013, 67: 1
[4] Mao C L, Xiao K, Dong C F, et al.Corrosion behavior of extra deep drawing cold rolled sheet in stimulative ocean-atmosphere environment[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 101(毛成亮, 肖葵, 董超芳等. 超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37: 101)
[5] Liu W, Wang J.Environmental impact of material corrosion research progress in marine splash zone[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 504(刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2010, 30: 504)
[6] Hao L, Zhang S X, Dong J H, et al.Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere[J]. Corros. Sci., 2012, 58: 175
[7] H?rlé S, Mazaudier F, Dillmann P, et al.Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles[J]. Corros. Sci., 2004, 46: 1431
[8] Graedel T E, Franey J P, Kammlott G W.Ozone- and photon-enhanced atmospheric sulfidation of copper[J]. Science, 1984, 224: 599
[9] Burleigh T D, Ruhe C, Forsyth J.Photo-corrosion of different metals during long-term exposure to ultraviolet light[J]. Corrosion, 2003, 59: 774
[10] Bertolini L, Gastaldi M, Pedeferri M P, et al.Prevention of steel corrosion in concrete exposed to seawater with submerged sacrificial anodes[J]. Corros. Sci., 2002, 44: 1497
[11] Rajendran V, Murugesan R.On site monitoring of corrosion of marine structure using self sacrificial galvanic anodes-case study[J]. J. Civil Eng. Sci., 2013, 2: 193
[12] Scully J R.Electrochemical impedance of organic-coated steel: Correlation of impedance parameters with long-term coating deterioration[J]. J. Electrochem. Soc., 1989, 136: 979
[13] Hosking N C, Str?m M A, Shipway P H, et al.Corrosion resistance of zinc-magnesium coated steel[J]. Corros. Sci., 2007, 49: 3669
[14] Shen G X, Chen Y C, Li J, et al.Studies of mechanism on photogenerated cathodic protection of the TiO2-SnO2 composite films[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 109(沈广霞, 陈艺聪, 李静等. 纳米TiO2-SnO2复合薄膜的光生阴极保护作用及机理研究[J]. 中国腐蚀与防护学报, 2006, 26: 109)
[15] Park H, Kim K Y, Choi W.A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel[J]. Chem. Commun., 2001, (3): 281
[16] Li J, Lin C J, Li J T, et al.A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel[J]. Thin Solid Films, 2011, 519: 5494
[17] Subasri R, Shinohara T, Mori K.TiO2 based photoanodes for cathodic protection of copper[J]. J. Electrochem. Soc., 2005, 152: B105
[18] Wang Y G, Liu W, Cao L X, et al.Preparation of MWCNT/TiO2 composite film and its application of photocathodic property for stainless steel[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 485(王永刚, 柳伟, 曹立新等. 多壁纳米碳管/TiO2复合薄膜的制备与光阴极保护性能研究[J]. 中国腐蚀与防护学报, 2012, 32: 485)
[19] Choi H, Stathatos E, Dionysiou D D.Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems[J]. Desalination, 2007, 202: 199
[20] Zhang L, Wang X T, Li H, et al.Photogenerated cathodic protection properties of CdSe-TiO2 composite material on 304 stainless steel[J]. Corros. Prot., 2015, 36: 258(张亮, 王秀通, 李红等. CdSe-TiO2复合材料对304不锈钢的光生阴极保护性能[J]. 腐蚀与防护, 2015, 36: 258)
[21] Ding Z X, Hou Y D, Li D Z, et al.Effect of morphological structure and photoelectric properties on photocatalytic performance of TiO2[J]. Acta Phys.-Chim. Sin., 2003, 19: 978(丁正新, 侯乙东, 李旦振等. 形态结构和光电特性对纳米TiO2光催化性能的影响[J]. 物理化学学报, 2003, 19: 978)
[22] Li J, Yun H, Lin C J.The Fe-doped TiO2 nanotube arrays as a photoanode for cathodic protection of stainless steel[J]. Acta Phys.-Chim. Sin., 2007, 23: 1886(李静, 云虹, 林昌健. 铁掺杂TiO2纳米管阵列对不锈钢的光生阴极保护[J]. 物理化学学报, 2007, 23: 1886)
[23] Zhu Y F, Du R G, Li J, et al.Photogenerated cathodic protection properties of a TiO2 nanowire film prepared by a hydrothermal method[J]. Acta Phys.-Chim. Sin., 2010, 26: 2349(朱燕峰, 杜荣归, 李静等. 水热法制备TiO2纳米线薄膜的光生阴极保护性能[J]. 物理化学学报, 2010, 26: 2349)
[24] Lei C X, Zhou H, Feng Z D.Effect of liquid-phase-deposited parameters on the photogenerated cathodic protection properties of TiO2 films[J]. J. Alloy. Compd., 2012, 542: 164
[25] Li S N, Wang Q, Chen T, et al.Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316?L stainless steel[J]. Nano. Res. Lett., 2012, 7: 227
[26] Yuan J N, Tsujikawa S.Photo-effects of sol-gel derived TiO2 coating on carbon steel in alkaline solution[J]. Zairyo-to-Kankyo, 2009, 44: 534
[27] Ohko Y, Saitoh S, Tatsuma T, et al.Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel[J]. J. Electrochem. Soc., 2001, 148: B24
[28] Zhou M J, Zeng Z O, Zhong L.Photogenerated cathode protection properties of nano-sized TiO2/WO3 coating[J]. Corros. Sci., 2009, 51: 1386
[29] Bai X, Li T, Qi Y X, et al.One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance[J]. Electrochim. Acta, 2015, 187: 389
[30] Li J, Lin C J, Lai Y K, et al.Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel[J]. Surf. Coat. Technol., 2010, 205: 557
[31] Zhang W F, He Y L, Zhang M S, et al.Raman scattering study on anatase TiO2 nanocrystals[J]. J. Phys., 2000, 33D: 912
[32] Wenzel R N.Surface roughness and contact angle[J]. J. Phys. Chem., 1948, 53: 1466
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[12] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[13] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.